Cyber-Physical System Fundamentals

<table>
<thead>
<tr>
<th>Rota</th>
<th>Duration</th>
<th>Semester</th>
<th>SWS</th>
<th>Credit Points</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annually SS</td>
<td>1 Semester</td>
<td>2nd (Semester)</td>
<td>4 SWS</td>
<td>6</td>
<td>180 h</td>
</tr>
</tbody>
</table>

1 **Modul Structure**

<table>
<thead>
<tr>
<th>Course (Abbreviation)</th>
<th>Type/ SWS</th>
<th>Presence</th>
<th>Self Study</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cyber-Physical System Fundamentals (CPSF)</td>
<td>Lecture/ 4 SWS</td>
<td>45 h</td>
<td>75 h</td>
<td>4</td>
</tr>
<tr>
<td>b) Cyber-Physical System Fundamentals (CPSF)</td>
<td>Lab</td>
<td>60 h</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

2 **Language:** English

3 **Content:**
The course is based on the presenter’s book on the subject and includes the following topics:

1. Introduction: Definition of terms, scope of the course
2. Specification and modeling: models of computation, communication models, finite state machines, data flow, discrete event models, von-Neumann-models, expressiveness of models
3. CPS hardware: hardware-in-the-loop, sampling and A/D-conversion, processing, field-programmable gate arrays (FPGAs), communication hardware, D/A-conversion, sampling theorem, output
4. Standard software: embedded operating systems, real-time operating systems, priority inversion, middleware
5. Evaluation and validation: objective functions, Pareto-optimality, worst-case execution time, energy consumption, reliability, real-time calculus, verification
6. Mapping of applications to execution platforms: standard optimization techniques, real-time scheduling, rate monotonic scheduling, earliest deadline first scheduling, hardware/software partitioning, mapping of applications to heterogeneous multi-processors
7. Selected optimizations.

Literature:
- Lego Mindstorm NXT Technical documentation
- Technical documentation for the used finite state machine design tool (StateMate or similar)

4 **Competencies**

Students successfully finishing the course should be able to:
- Understand how cyber-physical (CPS) hardware interacts with CPS software and use this knowledge to design CPS software,
- Select models of computation and programming languages that are appropriate for a given design problem,
- Select an appropriate scheduling technique for embedded systems, Apply hardware/software design techniques in order to optimize the systems which they are supposed to design.

5 **Examination Requirements**
The students have to pass both the lab and the finals.

6 **Formality of Examination**
- Module Finals
- Accumulated Grade

7 **Module Requirements (Prerequisites)**
Basic knowledge in programming as well as finite-state machines.
| 8 | **Allocation to Curriculum:**
 Program: Automation & Robotics, Field of study: Robotics, Process Automation, Cognitive Systems, |
|---|---|
| 9 | **Responsibility/ Lecturer**
 Prof. Dr. J. Chen/ Prof. Dr. J. Chen |