Smart Grids

<table>
<thead>
<tr>
<th>Rota</th>
<th>Duration</th>
<th>Semester</th>
<th>SWS</th>
<th>Credit Points</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annually SS</td>
<td>1 Semester</td>
<td>2nd (Semester)</td>
<td>4 SWS</td>
<td>6</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Module structure

<table>
<thead>
<tr>
<th>Course (Abbreviation)</th>
<th>Type/ SWS</th>
<th>Presence</th>
<th>Self study</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Grids (SG)</td>
<td>Lecture/ 3 SWS</td>
<td>45 h</td>
<td>90 h</td>
<td>5</td>
</tr>
<tr>
<td>Smart Grids (SG)</td>
<td>Presentation / 1 SWS</td>
<td>10 h</td>
<td>35 h</td>
<td>1</td>
</tr>
</tbody>
</table>

Language

English

Content

In the past years the energy system has changed drastically. Due to environmental and political reasons, the power generation from renewable energy resources is increasing while conventional power plants are being shut down. This not only means a change of adopted technologies but also a change of the power flow direction in the electrical grid. The uncertainties of the renewable energy resources have to be properly dealt with using appropriate strategies, algorithms and technologies. This has to be done in order to avoid system instabilities causing complete or partial system blackouts.

This course will handle the following aspects of the changing electrical energy network:

1. Basics of Energy Engineering
2. Renewable Energy Technologies
3. Distribution Grid Planning
4. Flexibility and Smart Meters
5. Voltage Regulation
6. State Estimation
7. Protection and control functions
8. Electro-mobility

Competencies

The students successfully finishing the course should be able to

- understand the challenges in today's and future electrical energy networks
- comprehend the multiple areas of research done in the distribution grids
- develop new solution approaches for energy system problems based on their acquired knowledge.

Examination Requirements

Dependent on the number of participants the final exam is takes place as oral (30 min) or written exam (2h).

Formality of Examination

- ✔ Module Finals
- □ Accumulated Grade

Module Requirements (Prerequisites)

Basic knowledge in Electrical Energy Engineering

Allocation to Curriculum:

Responsibility/ Lecturer

Dr.-Ing. Ulf Häger / Dr. –Ing. Ulf Häger