<table>
<thead>
<tr>
<th>Rota</th>
<th>Duration</th>
<th>Semester</th>
<th>SWS</th>
<th>Credit Points</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>annually WS</td>
<td>1 Semester</td>
<td>3rd (Semester)</td>
<td>3 SWS</td>
<td>5</td>
<td>150 h</td>
</tr>
</tbody>
</table>

1. Modul Structure

<table>
<thead>
<tr>
<th>Course (Abbreviation)</th>
<th>Type/ SWS</th>
<th>Presence</th>
<th>Self Study</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Online Problems</td>
<td>Lecture/ 2 SWS</td>
<td>25 h</td>
<td>65 h</td>
<td>3</td>
</tr>
<tr>
<td>b) Online Problems</td>
<td>Tutorial/ 2 SWS</td>
<td>10 h</td>
<td>50 h</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Language

English

3. Content

1. Competitive Analysis
2. Randomized Algorithms
3. Deterministic Algorithms
4. Game-Theoretic Foundations
5. Request-Answer Games

Literature:
Allan Borodin, Ran El-Yaniv, ONLINE COMPUTATION AND COMPETITIVE ANALYSIS. Cambridge University Press.

4. Competencies

The students identify online problems and their characteristics. They are able to apply suitable methods to find algorithmic solutions. They can evaluate approaches with respect to efficiency, performance and complexity. They know how to design new online algorithms based on the knowledge acquired during the lecture.

5. Examination Requirements

The final exam will be an oral or written exam.

6. Formality of Examination

- Module Finals
- Accumulated Grade

7. Module Requirements (Prerequisites)

Recommended: knowledge in discrete mathematics and foundations of algorithms

8. Allocation to Curriculum:

Program: Automation & Robotics, Field of study: Robotics, Cognitive Systems

9. Responsibility/ Lecturer

Prof. Dr.-Ing. Uwe Schwiegelshohn/ Prof. Dr.-Ing. Uwe Schwiegelshohn