Modulhandbuch
für den Masterstudiengang
Elektrotechnik und Informationstechnik

Aktualisierte Version
gemäß Beschluss des Fakultätsrates vom
10.10.2019
Inhaltsverzeichnis

Struktur des Studiengangs.. 4
1. Semester... 5
Modul 1-3: MODELLBILDUNG UND SIMULATION - MODELLIERUNG UND SIMULATION SIGNALVERARBEITENDER SYSTEME.. 6
Modul 1-4: MODELLBILDUNG UND SIMULATION – SIMULATION GEMISCHTER SYSTEME 7
Modul 1-6: MODELLBILDUNG UND SIMULATION – ROBOTIK UND AUTOMOTIVE 8
Modul 1-7: MODELLBILDUNG UND SIMULATION – ELEKTRISCHE ENERGIEÜBERTRAGUNGSSYSTEME ... 9
Modul 1-8: MODELLBILDUNG UND SIMULATION - RECHNERGESTÜTZTER ENTWURF INTEGRIERTER SCHALTUNGEN ... 10
Modul 1-9: MODELLBILDUNG UND SIMULATION – DIGITALE ÜBERTRAGUNGS-SYSTEME........... 11
Modul 1-10: MODELLBILDUNG UND SIMULATION – MODELLBASIERTE DIMENSIONIERUNG VON KOMMUNIKATIONSSYSTEMEN.. 12
Modul 1-11: MODELLBILDUNG UND SIMULATION – FELD- UND NETZWERKBASIERTES MODELLIERUNG.. 13
Modul 1-12: MODELLBILDUNG UND SIMULATION – NANOTECHNOLOGIEN, THZ-TECHNIK UND PHOTONIK... 14
Modul 1-13: MODELLBILDUNG UND SIMULATION - HOCHFREQUENZTECHNIK....................... 15
Praktikum 1: FELDTHEORETISCHE SIMULATION ... 16
Praktikum 2: ELEKTROMAGNETISCHE VERTRÄGLICHKEIT ... 17
Praktikum 3: DIGITALE ÜBERTRAGUNGSTECHNIK ... 18
Praktikum 4: SIMULATIVE LEISTUNGSBEWERTUNG VON KOMMUNIKATIONSSNETZEN 19
Praktikum 5: SIMULATION DIGITALER SCHALTUNGEN IN VHDL .. 20
Praktikum 6: SIMULATION UND REGELUNG VON ROBOTERSYSTEMEN 21
Praktikum 7: SIMULATION UND REGELUNG VON CO-ROBOTERN .. 22
2. Semester... 23
Modul 2-1: AUSLEGUNG UND BETRIEB ELEKTRISCHER MASCHINEN 24
Modul 2-2: MONITORING UND DIAGNOSE ELEKTROMECHANISCHER SYSTEME 25
Modul 2-5: ELEKTRIZITÄTSWIRTSCHAFT ... 26
Modul 2-8: INNOVATIVE ISOLIERSYSTEME ... 27
Modul 2-9: ENTWICKLUNGSMETHODEN UND QUALITÄTSSICHERUNGSSYSTEME 28
Modul 2-10: OPTISCHE ÜBERTRAGUNGSTECHNIK ... 29
Modul 2-11: MOBILFUNKNETZE ... 30
Modul 2-13: BILDKOMMUNIKATION ... 31
Modul 2-14: 3D COMPUTERVISION .. 32
Modul 2-15: SATELLITENKOMMUNIKATIONSTECHNIK .. 33
Modul 2-16: SCHEDULING PROBLEMS AND SOLUTIONS ... 35
Modul 2-17: HOCHFREQUENZTELEKTRONIK .. 36
Modul 2-18: METHODS OF INFORMATION TECHNOLOGY: POSITIONING AND SPATIAL ESTIMATION 37
Modul 2-19: LOCAL NETWORKS - COMMUNICATION AND CONTROL 38
Modul 2-20: HALBLEITERTECHNOLOGIE ... 39
Modul 2-21: MIKROSYSTEMINTEGRATION ... 40
Modul 2-22: MIKROSTRUKTURTECHNIK ... 41
<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-23</td>
<td>EMV IM KRAFTFAHRZEUG</td>
<td>42</td>
</tr>
<tr>
<td>2-24</td>
<td>MEHRGRÖBENSYSTEME UND OPTIMALE REGELUNG</td>
<td>43</td>
</tr>
<tr>
<td>2-30</td>
<td>SIGNAL-INTEGRITY</td>
<td>44</td>
</tr>
<tr>
<td>3-20</td>
<td>MOBILE ROBOTER</td>
<td>46</td>
</tr>
<tr>
<td>2-31</td>
<td>MEDIZINTECHNIK</td>
<td>47</td>
</tr>
<tr>
<td>2-33</td>
<td>SCHNELLSCHALTENDE LEISTUNGSELEKTRONISCHE SYSTEME</td>
<td>49</td>
</tr>
<tr>
<td>2-34</td>
<td>REMOTE SENSING</td>
<td>50</td>
</tr>
<tr>
<td>2-35</td>
<td>AUSGEWÄHLTE KAPITEL DER HOCHSPANNUNGSTECHNIK</td>
<td>51</td>
</tr>
<tr>
<td>2-36</td>
<td>AUTOMOTIVE SYSTEMS I</td>
<td>52</td>
</tr>
<tr>
<td>2-37</td>
<td>SICHERE KOMMUNIKATIONSTECHNIK</td>
<td>53</td>
</tr>
<tr>
<td>2-38</td>
<td>SMART GRIDS</td>
<td>54</td>
</tr>
<tr>
<td>3-20</td>
<td>MOBILE ROBOTER</td>
<td>55</td>
</tr>
<tr>
<td>3-30</td>
<td>OBERSEMINAR</td>
<td>56</td>
</tr>
<tr>
<td>3-1</td>
<td>AUSGLEICHSVORGÄNGE IN ELEKTRISCHEN ANTRIEBEN</td>
<td>57</td>
</tr>
<tr>
<td>3-2</td>
<td>AUFBAU UND NETZBETRIEB VON WINDKRAFTANLAGEN</td>
<td>58</td>
</tr>
<tr>
<td>3-5</td>
<td>OPTOSENSORIK FÜR ENERGIEANLAGEN</td>
<td>59</td>
</tr>
<tr>
<td>3-6</td>
<td>ERNEUERBARE ENERGIEQUELLEN</td>
<td>60</td>
</tr>
<tr>
<td>3-10</td>
<td>MESSTECHNIK PHOTONISCHER NETZE</td>
<td>61</td>
</tr>
<tr>
<td>3-11</td>
<td>HOCHFREQUENZSYSTEME</td>
<td>62</td>
</tr>
<tr>
<td>3-13</td>
<td>SATELLITENNAVIGATION</td>
<td>63</td>
</tr>
<tr>
<td>3-16</td>
<td>KFZ-BORDNETZE</td>
<td>64</td>
</tr>
<tr>
<td>3-18</td>
<td>TECHNOLOGIEN UND BAUELEMENTE DER INTEGRIERTEN OPTIK</td>
<td>65</td>
</tr>
<tr>
<td>3-22</td>
<td>NICHTLINEARE SYSTEME UND ADAPTIVE REGELUNG</td>
<td>66</td>
</tr>
<tr>
<td>3-24</td>
<td>DIGITALE QUELLENCODIERUNG</td>
<td>67</td>
</tr>
<tr>
<td>3-29</td>
<td>LEISTUNGSELEKTRONISCHE SCHALTUNGEN</td>
<td>68</td>
</tr>
<tr>
<td>3-31</td>
<td>NUMERISCHE FELDBERECHNUNG</td>
<td>69</td>
</tr>
<tr>
<td>3-33</td>
<td>ELEKTRISCHE ANTRIEBSTECHNIK UND AKTORIK</td>
<td>70</td>
</tr>
<tr>
<td>3-34</td>
<td>BIONISCHE SYSTEME</td>
<td>71</td>
</tr>
<tr>
<td>3-35</td>
<td>ONLINE PROBLEMS</td>
<td>72</td>
</tr>
<tr>
<td>3-36</td>
<td>INTEGRIERTE PHOTONIK</td>
<td>73</td>
</tr>
<tr>
<td>3-37</td>
<td>AUTOMOTIVE SYSTEMS II</td>
<td>74</td>
</tr>
<tr>
<td>3-38</td>
<td>HUMAN-CENTERED ROBOTICS</td>
<td>75</td>
</tr>
<tr>
<td>2-25</td>
<td>MODELLIERUNG UND REGELUNG VON ROBOTERN</td>
<td>76</td>
</tr>
<tr>
<td>4-1</td>
<td>MASTERARBEIT</td>
<td>77</td>
</tr>
<tr>
<td>Versioneninformationen</td>
<td></td>
<td>78</td>
</tr>
</tbody>
</table>
Struktur des Studiengangs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellbildung und Simulation Basismodul 1</td>
<td>Wahlpflichtbereich insgesamt 45 Credits, davon mindestens 30 Credits im Studien schwerpunkt</td>
<td>Wahlpflichtmodule 30 Credits 18 SWS</td>
<td>Masterarbeit 900 h 30 Credits</td>
</tr>
<tr>
<td>6 SWS 9 Credits</td>
<td>Wahlpflichtmodule 15 Credits 9 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modellbildung und Simulation Basismodul 2</td>
<td></td>
<td>Oberseminar 90 h 3 Credits</td>
<td></td>
</tr>
<tr>
<td>6 SWS 9 Credits</td>
<td></td>
<td>Projektgruppe 360 h 12 Credits</td>
<td></td>
</tr>
<tr>
<td>Modellbildung und Simulation Basismodul 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 SWS 9 Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modellbildung und Simulation Wahlpflichtpraktikum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 h 3 Credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Modellbildung und Simulation
- Wahlpflichtmodule im Studien schwerpunkt
- Wahlpflichtmodule in frei wählbaren Bereichen
- Praktische Ausbildung
1. Semester
Modul 1-3: MODELLBILDUNG UND SIMULATION - MODELLIERUNG UND SIMULATION SIGNALVERARBEITENDER SYSTEME

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modellierung und Simulation signalverarbeitender Systeme Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Modellierung und Simulation signalverarbeitender Systeme Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache: Deutsch

Lehrinhalte

A) Modellierung und Simulation von Mobilfunksystemen
1. Simulation eines einfachen Übertragungssystems
2. Modellierung der mobilen Übertragungsstrecke (Kanal)
3. Verzerrte Übertragung und Matched Filter
4. Least Squares und MMSE Empfänger
5. Approximation des Empfängers, strukturierte Algorithmen
6. Maximum Likelihood, Sphere Detektor und Konvexe Optimierung

B) Modellierung und Simulation von Bildsignalsystemen
1. Physikalische Modellierung der optischen Abbildung
2. Modellierung von Bildsensoren, optischen Systemen und deren Abbildungsfehlern
3. Darstellung von Bildinformation im Orts- und Frequenzraum
4. Verarbeitung von Farbbildern
5. Segmentierung von Objekten in Bildern und Bildsequenzen

Literatur
Proakis: Grundlagen der Kommunikationstechnik, 2. Auflage
Tranter: Principles of Communication Systems Simulation with Wireless Applications
Jähne: Digitale Bildverarbeitung

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und –leistungen

- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohler Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-320

Modulbeauftragte/r
Prof. Dr.-Ing. Jürgen Götze
Prof. Dr. rer. nat. Christian Wöhler

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 1-4: MODELLBILDUNG UND SIMULATION – SIMULATION GEMISCHTER SYSTEME

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simulation gemischter Systeme Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Simulation gemischter Systeme Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungs sprache
Deutsch

Lehrinhalte
1. Allgemeine Systembeschreibung, 1D, 2D und 3D, Zeit- und Frequenzbereich, analoge und diskrete Signale und Systeme
2. Schaltungssimulation als Beispiel für eine Simulation konservativer Systeme, Zeit- und Frequenzbereichssimulation; nichtlineare zeitinvariante Systeme; kausale und nicht-kausale Modellierung
3. Methoden zur numerischen Lösung von gewöhnlichen linearen und nichtlinearen DGL/DAE
4. Simulation thermischer Systeme
5. Verfahren zur Reduktion der Modellkomplexität (Model Order Reduction)
6. Partielle Differentialgleichungen und Integraleichungen zur Beschreibung von Systemen mit mehreren unabhängigen Variablen
7. Lösungsverfahren für partielle Differential- und Integralgleichungen
8. Modellierungssprachen VHDL-AMS, Modelica, Simulink und Simscape für gemischte Systeme (elektrisch, mechanisch und thermisch)
9. Aufbau und Anwendungen von gängigen Simulationsprogrammen
10. Elektrofahrzeug als komplexes Anwendungsbeispiel

Literatur
J. Hervé, VHDL-AMS Anwendungen und industrieller Einsatz, Oldenburg Verlag, 2006

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
Studienleistungen: Erfolgreiche Bearbeitung von vier Präsenz-Programmierübungen in Element 2
Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

Teilnahmeverzicht
Keine

Modultyp und Verwendbarkeit des Moduls
Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“

Modulbeauftragte/r
Prof. Dr.-Ing. Stephan Frei

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regelungstechnische Modellierung und Identifikation Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Regelungstechnische Modellierung und Identifikation Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Datenbasierte Modellierung und Optimierung Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Datenbasierte Modellierung und Optimierung Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte der Elemente 1 und 2

1. Parameteridentifikation, Strukturidentifikation, Least-Squares-Verfahren, Anwendungen
2. Methoden zur Frequenzgangmessung mit determinierten oder stochastischen Signalen, Anwendungen
3. Identifikation für zeitdiskrete Signale, Modelreduktion, Anwendungen

Lehrinhalte der Elemente 3 und 4

1. Datenbasierte Modellierung: lineare Regression, Neuronale Netze, lokale lineare Modellbäume
3. Anwendungen: Systemidentifikation für die Prädiktion und Simulation, NARX-Modelle, modellprädiktive Regelung, Robotik

Literatur

Isermann: Identifikation dynamischer Systeme 1 und 2;
Nelles: Nonlinear System Identification
Nocedal, Wright: Numerical Optimization

Kompetenzen

Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die wesentlichen theoretischen Konzepte und Methoden zur Modellierung, Identifikation und Optimierung komplexer Systeme. Aufgabenstellungen in der Modellierung und Optimierung dynamischer Systeme können die Studierenden einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Studienleistungen: keine

Die genauigen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen

Keine

Modultyp und Verwendbarkeit des Moduls

Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-373 und MB-374

Modulbeauftragte/r

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram
apl. Prof. Dr. rer. nat. Frank Hofmann

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 1-7: MODELLBILDUNG UND SIMULATION – ELEKTRISCHE ENERGIEÜBERTRAGUNGSSYSTEME

ETIT-207

<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>** Turnus**</td>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
<td>LP 9</td>
</tr>
<tr>
<td>Studienabschnitt</td>
<td>Preisenzanteil 70 h</td>
<td>Eigenstudium 200 h</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsplan

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dynamik und Stabilität von Energieübertragungssystemen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Dynamik und Stabilität von Energieübertragungssystemen Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Informationssysteme der Netzbetriebsführung Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Informationssysteme der Netzbetriebsführung Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache: Deutsch

Lehrinhalte

Elemente 1 und 2
1. Stabilität in elektrischen Energieübertragungssystemen
2. Modellbildung für Stabilitätsuntersuchungen
3. Dynamische Systemmodellierung und Simulation
4. Statische und transiente Stabilität
5. Frequenzstabilität und Frequenz-Leistungsregelung
6. Spannungsregelung und Spannungsstabilität
7. Maßnahmen zur Stabilitätsverbesserung

Elemente 3 und 4
1. Einführung in die Schutz- und Leittechnik elektrischer Energiesysteme
2. Aufgaben und Betriebsanforderungen der Netzleittechnik und Netzführung
3. Systemarchitektur und Algorithmen zur Netzbetriebsführung
4. Verfahren zur technischen und wirtschaftlichen Netzzustandsbeurteilung und zum Störungsmanagement
5. Schutzsysteme für Energienetze und deren Algorithmen
6. Berechnung symmetrischer und unsymmetrischer Fehler
7. Zukünftige Trends in der Leittechnik

Literatur:
- Handschin: Elektrische Energieübertragungssysteme
- Tietze: Netzleittechnik Teil 1 und Teil 2

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfahlener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-372

Modulbeauftragte/r
Prof. Dr.-Ing. Christian Rehtanz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 1-8: MODELLBILDUNG UND SIMULATION - RECHNERGESTÜTZTER ENTWURF INTEGRIERTER SCHALTUNGEN

ETIT-208

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
<td>1. Semester</td>
<td>9</td>
<td>90 h</td>
<td>180 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rechnergestützter Entwurf Integrierter Schaltungen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Rechnergestützter Entwurf Integrierter Schaltungen Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Integrierte Photonik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Integrierte Photonik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

der Elemente 1 und 2

1. Grundlagen des rechnergestützten Entwurfs digitaler integrierter Schaltungen
2. Entwurfswerkzeuge und Entwurfsablauf
3. Beispiele (Digitale Rechenschaltungen)

der Elemente 3 und 4

1. Grundlagen: Dielektrische Wellenleiter (Planare Wellenleiter, Streifenwellenleiter, Technische Anforderungen, Modellierung über Modenanalyse)
2. Passive Komponenten: Funktionsweise und Modellierung (Beschreibung der Modenkoppelung, Modellierung der Wellenausbreitung mit Zeitbereichs- und Frequenzbereichsverfahren, Anwendung als Richtkoppler, Filter, Modulatoren oder zur Dispersionskompensation)
3. Aktive Komponenten: Grundlagen, Funktionsweise und Modellierung (Laser, Verstärker, Photodetektoren, Modellierung über Ratengleichungen)

Literatur

Weste, Neil, Eshragian, Kamran: Principles of CMOS VLSI-Design;
März, Reinhard: Integrated Optics: Design and Modeling;
Ebeling, Karl-Joachim Ebeling: Integrierte Optoelektronik;
Börner, Müller, Schiek, Trommer: Elemente der integrierten Optik

4 Kompetenzen

Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, den Entwurf von digitalen CMOS-Schaltungen durchzuführen und kennen die gängigen Entwurfswerkzeuge. Darüber hinaus sind sie vertraut mit dem Aufbau und der Wirkungsweise der wichtigsten digitalen Rechenschaltungen.

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

- Modulprüfung
- Keine

7 Teilnahmevoraussetzungen

Keine

8 Modultyp und Verwendbarkeit des Moduls

Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“

9 Modulbeauftragte/r

Apl.Prof. Dr.-Ing. Dirk Schulz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digitale Übertragungssysteme Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Digitale Übertragungssysteme Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte der Elemente 1 und 2

1. Analyse und Modellierung von kontinuierlichen und diskreten Übertragungskanälen, insbesondere Funkkanälen, Entwurfswerkzeuge und Entwurfsablauf
2. Grundlagen der Informationstheorie
3. Analyse und Modellierung digitaler Modulationsverfahren
4. Breitbandverfahren und OFDM
5. Prinzipien der Kanalcodierung
6. Block und Faltungscode
7. Codierte Modulation
8. Verfahren mit iterativer Decodierung
9. Kanalcodierung in aktuellen digitalen Übertragungsstandards

Literatur

Proakis: Digital Communications
Moon: Error Correction Coding
Sklar: Digital Communications – Fundamentals and Applications

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- [x] Modulprüfung
- [] Teilleistungen

Teilnahmevoraussetzungen

Keine

Modultyp und Verwendbarkeit des Moduls

Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-321

Modulbeauftragte/r

Prof. Dr.-Ing. Rüdiger Kays

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 1-10: MODELLBILDUNG UND SIMULATION – MODELLBASIERTE DIMENSIONIERUNG VON KOMMUNIKATIONSSYSTEMEN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modellbas. Dimensionierung von Kommunikationssystemen Vorlesung</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Modellbas. Dimensionierung von Kommunikationssystemen Übung</td>
<td>U</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Modulstruktur

- Turnus: Jährlich zum WS
- Dauer: 1 Semester
- Studienabschnitt: 1. Semester
- LP: 9
- Präsenzanteil: 70 h
- Eigenstudium: 200 h

2. Lehrveranstaltungssprache

- Deutsch

3. Lehrinhalte der Elemente 1 und 2

1. Analyse und Modellierung zufallsgesteuerter Prozesse
2. Ereignisorientierte und Prozessorientierte Simulationsmodelle
3. Methoden zur Generierung von (Pseudo)-Zufallszahlen
4. Statistische Verfahren zur Auswertung von Simulationsergebnissen
5. Modellierung von Kommunikationsnetzen und -protokollen und deren Systemumgebung
6. Validierung von Simulationsergebnissen mit analytischen Methoden
7. Netzplanung und -dimensionierung
8. Fallstudien: Zugriff mehrerer Stationen auf einen gemeinsamen Kommunikationskanal, Routing in drahtlosen Netzen, Sprachübertragung im Internet

4. Literatur

- Tran-Gia: Einführung in die Leistungsbewertung und Verkehrstheorie
- J.B. Sinclair: Simulation of Computer Systems and Computer Networks
- Montgomery und Runger: Applied Statistics and Probability for Engineers

5. Kompetenzen

6. Prüfungen

- Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

7. Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

8. Teilnahmevoraussetzungen

- Keine

9. Modultyp und Verwendbarkeit des Moduls

- Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-322

10. Modulbeauftragte/r

- Prof. Dr.-Ing. Christian Wietfeld

11. Zuständige Fakultät

- Fakultät für Elektrotechnik und Informationstechnik
Modulhandbuch Master Elektrotechnik und Informationstechnik

Modul 1-11: MODELLBILDUNG UND SIMULATION – FELD- UND NETZWERKBASIERTE MODELLIERUNG

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leistungselektronische Schaltungen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Leistungselektronische Schaltungen Praktikum</td>
<td>P</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Hochspannungstechnik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Hochspannungstechnik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache: Deutsch

Lehrinhalte

1. Selbstgeführte Schaltungen
2. Drehzeigermodulation
3. Schaltnetzteile und resonante Schaltungen
4. Leistungselektronische Interfaces für Photovoltaik und Windenergienutzung
5. FACTS

Literatur
- Mohan, Undeland, Robbins: Power Electronics
- Michel: Leistungselektronik, 4. Aufl.
- Küchler: Hochspannungstechnik
- Beyer, Moeller, Boeck, Zaengl: Hochspannungstechnik

Kompetenzen:

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

*Studienleistungen:

1. Erfolgliche Teilnahme an den Übungen in EL.2 (Einreichung von PLECS/PSIM Simulationen)

Die Studienleistung ist Voraussetzung zur Teilnahme an der Modulprüfung.

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen

Keine

Modultyp und Verwendbarkeit des Moduls
Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-370 und MB-371

Modulbeauftragte/r

| Prof. Dr.-Ing. Martin Pfost |
| Prof. Dr.-Ing. Frank Jenau |

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 1-12: MODELLBILDUNG UND SIMULATION – NANOTECHNOLOGIEN, THZ-TECHNIK UND PHOTONIK

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methoden zur Modellierung von Systemen in der Nanotechnologie</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Methoden zur Modellierung von Systemen in der Nanotechnologie</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>THz-Technik und Photonik</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>THz-Technik und Photonik</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache
Deutsch

3 Lehrinhalte der Elemente 1 und 2
1. Grundlagen der Festkörper- und Molekularelektronik
2. Klassifizierung der Methoden zur Analyse des elektronischen Verhaltens
3. Berechnungsmodelle und numerische Verfahren
4. Modellbildung von Systemen auf Grundlage quasistationärer und transiter Analyser
5. Anwendungsbeispiele (THz-Quellen, THz-Detektoren, Polymerelektronik)

Lehrinhalte der Elemente 3 und 4
1. Modelle zur Beschreibung von Komponenten und Systemen der THz-Technik und Photonik
2. Numerische Verfahren zur Lösung der diskreten Modellgleichungen
3. Verfahren zur Modellreduktion
4. High-Performance Computing (GPU, FPGA)
5. Anwendungsbeispiele (Biosensorik, Kommunikationstechnik, Materialanalyse)

Literatur
Sarhan M. Musa; Computational Nanotechnology: Modeling and Applications
Erik Bründermann, Heinz-Wilhelm Hübers, Maurice FitzGerald Kimmitt: Terahertz Techniques
Salah Obayya: Computational Photonics

4 Kompetenzen

5 Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
Studienleistungen: keine
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen
☐ Modulprüfung
☐ Teilleistungen

7 Teilnahmeverzichtsetzungen
Keine

8 Modultyp und Verwendbarkeit des Moduls
Basismodul im Masterstudiengang „Elektrotechnik und Informationstechnik“

9 Modulbeauftragte/r
PD Dr.-Ing. Dirk Schulz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 1-13: MODELLBILDUNG UND SIMULATION - HOCHFREQUENZTECHNIK

<table>
<thead>
<tr>
<th>Modulstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte der Elemente 1 und 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Antennen und Strahlungsfelder</td>
</tr>
<tr>
<td>2. Wellenausbreitung auf Leitungen</td>
</tr>
<tr>
<td>3. Leitungen als Schaltungselemente</td>
</tr>
<tr>
<td>4. Streuparameter</td>
</tr>
<tr>
<td>5. HF-Komponenten und Grundschaltungen (Verstärker, Oszillatoren, Mischer)</td>
</tr>
</tbody>
</table>

Lehrinhalte von Element 3

Praktikumsversuche zu HF-Schaltungen, Antennen und Funkübertragung.

Literatur

Unger: Elektromagnetische Wellen auf Leitungen; Voges: Hochfrequenztechnik

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten) *

Studienleistungen:
- Erfolgreiche Bearbeitung der Praktikumsversuche in Element 3

Die Studienleistungen sind Voraussetzung für die Teilnahme an der Modulprüfung.

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- [x] Modulprüfung
- [] Teilleistungen

Teilnahmevoraussetzungen

Empfohlene Kenntnisse: Theoretische Elektrotechnik, Grundlagen der Hochfrequenztechnik

Modultyp und Verwendbarkeit des Moduls

Basismodul im Masterstudiumg „Elektrotechnik und Informationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-342

Modulbeauftragte/r

Prof. Dr.-Ing. Peter Krummrich

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Praktikum 1: FELDTHEORETISCHE SIMULATION

ETIT-211

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>2 Wochen (Block)</td>
<td>1. Semester</td>
<td>3</td>
<td>60 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikumsversuche</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

3 **Lehrinhalte**

1. Einführung in die Funktionsweise und den Ablauf von numerischen Feldberechnungsprogrammen
2. Theorie der den Programmen zugrunde liegenden numerischen Methoden der Feldberechnung
3. Überführung von elektrotechnischen Problemstellungen in geeignete Berechnungsmodelle
4. Ausnutzung von Symmetrieigenschaften, Besonderheiten bei der Diskretisierung (Berechnungsgenauigkeit/-dauer), Arten der Randbedingungen und Freiheitsgrade
5. Simulation und Berechnung ausgewählter Problemstellungen (zweidimensional, rotations-symmetrisch) für zeitab-, bzw. unabhängige Felder
6. Funktionsnachweis und Vergleich der numerischen Lösungen mit analytischen Berechnungs-ergebnissen (falls möglich)
7. Export gewonnener Simulationsergebnisse zur numerischen und grafischen Weiterverarbeitung

Literatur

Kost: Numerische Methoden in der Berechnung elektromagnetischer Felder

4 **Kompetenzen**

Nach dem erfolgreichen Abschluss des Praktikums haben die Studierenden Grundlagenkenntnisse über die Einsatzmöglichkeiten und -grenzen von Feldberechnungsprogrammen erworben. Sie sind in der Lage, reale feldtheoretische Fragestellungen in eine berechenbare Anordnung zu überführen. Sie besitzen außerdem Kenntnisse, die es Ihnen ermöglichen, durch geeignete Maßnahmen den Rechenaufwand auf ein notwendiges Maß zu verringern und die Qualität eines so gewonnenen Simulationsergebnisses zu beurteilen.

5 **Prüfungen**

Erfolgreiche Bearbeitung von 70% der Praktikumsaufgaben

6 **Prüfungsformen und -leistungen**

- Modulprüfung
- Teilleistungen

7 **Teilnahmevoraussetzungen**

Empfohlene Voraussetzungen: Kenntnisse über die Grundlagen der theoretischen Elektrotechnik, Mathematische Grundlagenkenntnisse über numerisches Rechnen

Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

8 **Modultyp und Verwendbarkeit des Moduls**

Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

9 **Modulbeauftragte/r**

Prof. Dr.-Ing. Frank Jenau

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Praktikum 2: ELEKTROMAGNETISCHE VERTRÄGLICHKEIT

<table>
<thead>
<tr>
<th>MA-Studiengang:</th>
<th>Elektrotechnik und Informationstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jährl. zum SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Studienabschnitt</td>
<td>1. Semester</td>
</tr>
<tr>
<td>LP</td>
<td>3</td>
</tr>
<tr>
<td>Präsentanteil</td>
<td>48 h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>42 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikum</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

Lerninhalte
1. Analyse von typischen EMV-Problemen mit einfachen Beispielplatinen
2. Signale im Zeit- und Frequenzbereich
3. Umgang mit Messinstrumenten (Oszilloskop, Vektor-Netzwerkanalysator, Spektrumanalyser und Messempfänger)
4. Umgang mit typischen EMV-Prüfgeräten (ESD-Generator, Pulsgenerator, Leistungsverstärker)
5. Untersuchung von puls- und sinusförmigen Störquellen
6. Leitungs- und feldgebundene Störungen
7. Abhilfemaßnahmen zur Reduzierung der Kopplungen
8. Simulation zur Analyse von EMV-Problemen, Durchführung von EMV-Untersuchungen mit Simulationswerkzeugen
9. Normen zur Sicherstellung der EMV

Literatur
Kürner, Schwab: Elektromagnetische Verträglichkeit, Springer;
Paul: Introduction to Electromagnetic Compatibility, Wiley

Kompetenzen

Prüfungen
Die Betreuerin oder der Betreuer kontrolliert die Erledigung aller Teilaufgaben und das Protokoll während der Veranstaltung.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmeveraussetzungen
Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

Modultyp und Verwendbarkeit des Moduls
Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

Modulbeauftragte/r
Prof.-Dr.-Ing. Stephan Frei

Zuständiger Fachbereich
Fakultät für Elektrotechnik und Informationstechnik
Praktikum 3: DIGITALE ÜBERTRAGUNGSTECHNIK

MA-Studiengang: Elektrotechnik und Informationstechnik
ETIT-213

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>2 Wochen (Block)</td>
<td>1. Semester</td>
<td>3</td>
<td>48 h</td>
<td>42 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikum</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Konzepte für die Modellierung und Simulation: Verfahren der Modulation und der Kanalcodierung, Ausgangsgrößen/Resultate der Simulation und deren Implementierung durch Hardwarekomponenten und Messgeräte
2. Aufbau von Übertragungsverfahren auf der Basis vorgegebener Hardwaremodule und Untersuchung von Übertragungsverfahren wie ASK, QAM, FSK, OFDM, CDMA
3. Interpretation der Ergebnisse auf der Basis unterschiedlicher Kenngrößen wie Bitfehlerrate, Augendiagramm, Spektrum, Bandbreiteeffizienz
4. Verhalten von Übertragungsstrecken unter Annahme unterschiedlicher Kanalmodelle (AWGN-Kanal, Mehrwegeausbreitung)
5. Modellierung und Simulation des Einflusses von in der Praxis auftretenden Beeinträchtigungen (z.B. Fehler der Trägerrekonstruktion, Nichtlinearitäten)
6. Verhalten von Übertragungssystemen bei Einsatz von Verfahren der Kanalcodierung (einfache Block- und Faltungscodes)
7. Messen und Modellierung von Funkkanälen
8. Simulation ausgewählter Systembeispiele
9. Beispielhafte Implementierung von Algorithmen der Übertragungstechnik in Hardware

4 Literatur

Proakis: Digital Communications, Moon: Error Correction Coding, Sklar: Digital Communications – Fundamentals and Applications

5 Kompetenzen

6 Prüfungen

Die Betreuerin oder der Betreuer kontrolliert die Erledigung aller Teilaufgaben und das Protokoll während der Veranstaltung.

7 Prüfungsformen und -leistungen

- [] Modulprüfung
- [x] Teilleistungen

8 Teilnahmeverwaltungssetzung

9 Modultyp und Verwendbarkeit des Moduls

Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
<th>Zuständiger Fachbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Rüdiger Kays</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
1. Praktikumsversuche
 a. Simulationsaufbau
 b. Modul- und Simulationsdefinition bzw. -deklaration
 c. Simulation einfacher Kommunikationsnetze
2. Modellierung von Systemeigenschaften
 a. Modellierung von Kommunikationsprotokollen (ISO/OSI)
 b. Berücksichtigung von Mobilitätsaspekten on OMNeT++
 c. Modellierung und Berücksichtigung von Kommunikationskanaleigenschaften
d. Umsetzung vollständiger Systemszenarien
3. Bewertung und Optimierung von komplexen Kommunikationssystemen
 a. Simulation von dynamischen Kommunikationsnetzen
 b. Werkzeuge zur statistischen Analyse
 c. Validierung erhaltener Ergebnisse

Literatur
Vorlesungsunterlagen „Modellbasierte Dimensionierung von Kommunikationssystemen“
Peterson, Davie: Computer Networks, 4th Edition;
Sinclair: Simulation of Computer Systems and Computer Networks

5. Prüfungen
 Erfolgreiche Bearbeitung von mind. 80% der gestellten Aufgaben.

6. Prüfungsformen und –leistungen
 ☐ Modulprüfung
 ☐ Teilleistungen

7. Teilnahmeverzugsbeschränkungen
 Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

8. Modultyp und Verwendbarkeit des Moduls
 Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

9. Modulbeauftragte/r
 Prof. Dr.-Ing. Christian Wietfeld

Zuständige Fakultät
 Fakultät für Elektrotechnik und Informationstechnik
Praktikum 5: SIMULATION DIGITALER SCHALTUNGEN IN VHDL

ETIT-215

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährl. zum SoSe</td>
<td>2 Wochen (Block)</td>
<td>1. Semester</td>
<td>3</td>
<td>60 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikumsversuche</td>
<td>P</td>
<td>90</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Erarbeiten der Sprachgrundlagen von VHDL (Sprachkonstrukte, Datentypen usw.)
2. Modellierung einfacher logischer Verknüpfungen aber auch spezieller Logikschaltungen in VHDL mit Hilfe von Verhaltens- und Strukturbeschreibungen auf Basis von logischen Grundgattern und Zustandsautomaten
3. Erstellen komplexer digitaler Schaltungen, z. B. einer CPU durch Kombination verschiedener Logikschaltungen
4. Erstellen von Testumgebungen zur Simulation und Verifikation der modellierten Schaltungen
5. Graphische Visualisierung der modellierten Zustandsautomaten und Systeme

Literatur

Ashenden: The Designers' Guide to VHDL;
Molitor, Ritter: VHDL – Eine Einführung

4 Kompetenzen

5 Prüfungen

Erfolgreiche Bearbeitung von 70% der Praktikumsaufgaben

6 Prüfungsformen und -leistungen

☐ Modulprüfung ☐ Teilleistungen

7 Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Grundlagen der digitalen Schaltungstechnik, Kenntnisse über den Aufbau und die Funktionsweise von Mikroprozessorsystemen und Beherrschen einer Programmiersprache (C, C++)

Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

8 Modultyp und Verwendbarkeit des Moduls

Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

9 Modulbeauftragte/r

Prof. Dr.-Ing. Uwe Schwiegelshohn Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Praktikum 6: SIMULATION UND REGELUNG VON ROBOTERSYSTEMEN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikumsversuche</td>
<td>P</td>
<td>4</td>
</tr>
</tbody>
</table>

Turnus
Jährlich zum WS

Dauer
1 Semester

Studienabschnitt
1. Semester

LP
3

Präsenzanteil
48 h

Eigenstudium
42 h

Modulstruktur

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Basiskompetenz: Matlab, Simulink, Robotic-Toolbox, Virtual Reality
2. Versuch: Modellierung, Kinematik und Dynamik
3. Versuch: Bahnplanung und Regelung
4. Versuch: Bildbasierte Regelung

Literatur
Bode: Systeme der Regelungstechnik mit MATLAB und Simulink;
Angermann, Beuschel, Rau, Wohlfarth: Matlab – Simulink – Stateflow: Grundlagen, Toolboxes, Beispiele;
Siciliano, Sciavicco, Villani, Oriolo: Robotics – Modelling, Planning and Control;

Kompetenzen
Nach dem erfolgreichen Abschluss des Praktikums beherrschen die Studierenden die wesentlichen praktischen Grundlagen und Methoden zur Modellierung und Simulation von Robotersystemen. Aufgabenstellungen in der Robotik können die Studierenden einordnen und selbständig lösen, sie besitzen durch die praktische Anwendung vertiefte Kenntnisse in der Steuerung und Regelung von robotischen Manipulatoren.

Prüfungen
Die Betreuerin oder der Betreuer kontrolliert die Erledigung aller Teilaufgaben und das Protokoll während der Veranstaltung.

Prüfungsformen und –leistungen
- Modulprüfung
- Teilleistungen

Teilnehmervoraussetzungen
Keine
Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

Modultyp und Verwendbarkeit des Moduls
Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

Modulbeauftragte/r
Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Praktikum 7: SIMULATION UND REGELUNG VON CO-ROBOTERN

ETIT-219

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS & SS (Blockveranstaltung)</td>
<td>1 Semester</td>
<td>1. Semester, 2. Semester</td>
<td>3</td>
<td>45 h</td>
<td>45 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Praktikumsversuche</td>
<td>P</td>
<td>4</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Basiskompetenz: Matlab Robotics System Toolbox
2. Räumliche Transformationen
3. Simulation und Versuch: Direkte und inverse Kinematik
4. Simulation und Versuch: Differentielle Kinematik und inverse Kinematik-Regelung
5. Simulation und Versuch: Lernen durch Demonstration mit Co-Robotern

Literatur

Calinon S., Robot Programming by Demonstration, EPFL Press, 2009

4 Kompetenzen

5 Prüfungen

Die Betreuerin oder der Betreuer kontrolliert die Erledigung aller Teilaufgaben und das Protokoll während der Veranstaltung.

6 Prüfungsformen und -leistungen

☐ Modulprüfung
☐ Teilleistungen

7 Teilnahmeveraussetzungen

Grundkenntnisse in Matlab
Die Anzahl der Teilnehmerinnen und Teilnehmer ist begrenzt. Die Zulassung zur Teilnahme erfolgt gem. § 9 der Prüfungsordnung.

8 Modultyp und Verwendbarkeit des Moduls

Praktikum im Masterstudiengang „Elektrotechnik und Informationstechnik“

9 Modulbeauftragte/r

Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
2. Semester
Modul 2-1: AUSLEGUNG UND BETRIEB ELEKTRISCHER MASCHINEN

ETIT-220

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jährlich zum SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Studienabschnitt</td>
<td>2. Semester</td>
</tr>
<tr>
<td>LP</td>
<td>5</td>
</tr>
<tr>
<td>Präsenzanteil</td>
<td>35 h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>115 h</td>
</tr>
</tbody>
</table>

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Auslegung und Betrieb elektrischer Maschinen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Auslegung und Betrieb elektrischer Maschinen Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte

1. Auslegung verschiedener Maschinentypen
2. Regelung von Asynchron- und PM-Maschinen
3. Kühlung und Temperaturverteilung
4. Normen für elektrische Maschinen
5. Werkstoffe im Elektromaschinenbau

Literatur

Müller, Ponick, Vogt: Berechnung elektrischer Maschinen

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung
- ☐ Teilleistungen

Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in den Grundlagen der Energietechnik, Theoretischer Elektrotechnik, Elektrische Maschinen und Antriebe

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-323

Modulbeauftragte/r

Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
<tr>
<td>1</td>
<td>Modulstruktur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
<td>Typ</td>
<td>SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Monitoring und Diagnose elektromechanischer Systeme Vorlesung</td>
<td>V</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monitoring und Diagnose elektromechanischer Systeme Übung</td>
<td>U</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungssprache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrinhalte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Messung elektrischer und nicht-elektrischer Größen in elektromechanischen Systemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Sensorkonzepte, modellbasierte Messsysteme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Monitoring und Diagnose von elektrischen Großantrieben</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Design of Experiments (DoE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mühl: Einführung in die elektrische Messtechnik;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regtien: Measurement science for engineers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kompetenzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nach erfolgreichem Abschluss des Moduls haben die Studierenden Kenntnis über die Messtechnik, die Sensoren und die Verfahren, die notwendig sind, um an elektrischen Großantrieben sinnvolle Überwachung und Diagnose durchführen zu können. Darüber hinaus können sie auf theoretische Werkzeuge zurückgreifen, die bei der Ausführung und Bewertung von Messungen notwendig sein können.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Prüfungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prüfungsformen und -leistungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulprüfung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Teilleistungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Teilnahmevoraussetzungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empfohlene Voraussetzungen: Ausreichende Kenntnisse in den Grundlagen der Energietechnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Modultyp und Verwendbarkeit des Moduls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Elektrische Energietechnik“ sowie „Robotik und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-369</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Modulbeauftragte/r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Martin Pfost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zuständige Fakultät</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
<td>Typ</td>
<td>SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Elektrizitätswirtschaft Vorlesung</td>
<td>V</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Elektrizitätswirtschaft Übung</td>
<td>U</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrinhalte

- 1. Organisation des Strommarktes und Regulierungsrahmen
- 2. Bilanzierungsmanagement
- 3. MarktinTEGRATION erneuerbarer Energien
- 4. Lastprognose und Lastmanagement
- 5. Ausgleichs- und Regelenergiemechanismen und -märkte
- 6. Portfolio- und Bezugsoptimierung
- 7. Modellierung und Simulation von Elektrizitätsmärkten
- 8. Asset- und Qualitätsmanagement

Literatur

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Kenntnisse in den Grundlagen der Energietechnik

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-375

Modulbeauftragte/r

Prof. Dr.-Ing. Christian Rehtanz

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 2-8: INNOVATIVE ISOLIERSYSTEME

Modulhandbuch Master Elektrotechnik und Informationstechnik

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innovative Isoliersysteme Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Innovative Isoliersysteme Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte

1. Gasförmige, flüssige und feste Isolationssysteme
2. Mehrstoffdielektrika
3. Elektrische Isolationsauslegung
4. Thermo-mechanische Isolationsauslegung
5. Grenzflächen und Feldsteuerung
6. Praxisbeispiele

Literatur

Kind, Kärner: Hochspannungsisoliertechnik; Küchler: Hochspannungstechnik

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

☒ Modulprüfung
☐ Teilleistungen

Teilnehmervoraussetzungen

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in den Grundlagen der Energietechnik und Hochspannungstechnik

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Elektrische Energietechnik“, Referenz modulnummer: MB-326

Modulbeauftragte/r

Prof. Dr.-Ing. Frank Jenau
Dr.-Ing. Friedhelm Pohlmann

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 2-9: ENTWICKLUNGSMETHODEN UND QUALITÄTSSICHERUNGSSYSTEME

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entwicklungsmethoden und Qualitätssicherungssysteme Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Entwicklungsmethoden und Qualitätssicherungssysteme Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Industrielle Qualitätssicherung
2. Management von Produktentwicklungen
3. Design of Experiments DOE
4. Fehlermöglichkeits- und Einflussanalyse FMEA
5. Lebensdauerorientierter Entwurf
6. Messtechnische Erfassung

Literatur

Hering: Qualitätsmanagement für Ingenieure; Schwab: Managementwissen für Ingenieure

4 Kompetenzen

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genaueren Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

7 Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in der Energietechnik durch erfolgreiche Teilnahme eines energietechnischen Basismoduls

8 Modultyp und Verwendbarkeit des Moduls

9 Modulbeauftragte/r

Prof. Dr.-Ing. Frank Jenau

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 2-10: OPTISCHE ÜBERTRAGUNGSTECHNIK

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optische Übertragungstechnik Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Optische Übertragungstechnik Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Grundlagen optischer Übertragungssysteme
2. Eigenschaften optischer Übertragungsmedien
3. Optische Wellen in Einmodenfasern
4. Nichtlineare Effekte in Glasfasern
5. Optische Verstärker
6. Erzeugung von Sendesignalen
7. Empfänger für digitale Signale
8. Modulationsverfahren und Systemaspekte

Literatur
Unger: Optische Nachrichtentechnik

Kompetenzen

Prüfungen
* Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
 Studienleistungen: keine

*Die genaue Prüfungsmodalität wird spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
☑ Modulprüfung □ Teilprüfung

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Grundkenntnisse der Nachrichtentechnik und der Hochfrequenztechnik

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkt „Informations- und Kommunikationstechnik“ sowie „Mikrosystemtechnik und Mikroelektronik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-303

Modulbeauftragte/r
Prof. Dr.-Ing. Peter Krummrich

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-11: MOBILFUNKNETZE

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mobilfunknetze: Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Mobilfunknetze: Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache
Deutsch

3 Lehrinhalte
1. Marktaspekte und geschichtliche Entwicklung des Mobilfunks
2. Systemaspekte (Eigenschaften des Funkfeldes, Mobilität der Teilnehmer, Bedarfsermittlung und Aufteilung des Spektrums, Netzplanung, Protokolle)
3. TDMA- und CDMA basierte Zellularfunknetze (GSM/GPRS/EDGE, UMTS/HSPA)
4. OFDMA-basierte Zellularfunknetze (LTE/LTE-A, LTE D2D, LTE V2X)
5. Lokale Funknetze (WLAN, DECT, WPAN, Mesh)
6. Satellitenfunknetze, Aerial Wireless Networks
7. Grundlagen drahtloser Internet of Things Netze (LPWAN, Cellular-IoT)
8. Zellularfunknetze der 5. Generation (5G) (mmWave, Network Slicing)

Theoretisch erarbeitete Lehrinhalte werden über die Übungen hinaus im Rahmen praktischer Demonstrationen und der Diskussion aktueller Forschungsarbeiten gefestigt.

Literatur (jeweils aktuellste Fassung)
Walke, B.: Mobile Radio Networks, Wiley

4 Kompetenzen

5 Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
Studienleistung: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen
☐ Modulprüfung
☐ Teilleistungen

7 Teilnahmevoraussetzungen
Keine

8 Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-304

9 Modulbeauftragte/r
Prof. Dr.-Ing. Christian Wietfeld
Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-13: BILDKOMMUNIKATION

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>10</td>
<td>70 h</td>
<td>230 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bildkommunikation Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Bildkommunikation Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Grundlagen der Bildkommunikation: Licht, Wahrnehmung von Licht und Farbe, Farbdarstellung, Farbräume
2. Prinzipien von Bildkommunikationssystemen: Ein- und mehrdimensionale Abtastung von Bewegtbildszenen, Bildformate, Bandbreiten und Datenraten
3. Technologien der Quellencodierung: Bildcodierung, Audiocodierung, Multiplex
4. Bildaufnahme: Sensoren, Kameras
5. Bildwiedergabe: CRT-Systeme, Flachbildschirme, Projektionssysteme, 3D-Displays
6. Analog Fernsehsysteme: Grundlagen, NTSC und PAL, Analog Übertragungstechnik
7. Digitale Übertragungssysteme: DVB-Standardfamilie, Übertragung über Kabel, Satellit und terrestrisch, Breitbandnetzwerke
8. Bildspeicherung: Analog und digitale Magnetbandaufzeichnung, optische Medien

Literatur

Wendland/Schröder: Fernsehtechnik Band I und Band II
Reimers: Digitale Fernsehtechnik
Schmidt: Professionelle Videotechnik

4 Kompetenzen

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

- ✔ Modulprüfung
- □ Teilleistungen

7 Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Kenntnisse der Nachrichtentechnik

8 Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-305

9 Modulbeauftragte/r

Prof. Dr.-Ing. Rüdiger Kays

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 2-14: 3D COMPUTER VISION

<table>
<thead>
<tr>
<th>Modulstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Modellierung und Kalibrierung von Kamerasystemen</td>
</tr>
<tr>
<td>2. 3D-Rekonstruktion von Szenen aus mehreren Kameralbildern durch Bündelausgleich</td>
</tr>
<tr>
<td>3. Ermittlung von Punktkorrespondenzen</td>
</tr>
<tr>
<td>4. Einführung in 3D-Rekonstruktionsverfahren auf Basis projektiver Geometrie</td>
</tr>
<tr>
<td>5. 3D-Pose-Estimation</td>
</tr>
<tr>
<td>6. Verfahren zur 3D-Rekonstruktion von Oberflächen anhand ihrer Reflexionseigenschaften</td>
</tr>
<tr>
<td>7. Praktische Anwendungsbeispiele aus der aktuellen Forschung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horn: Robot Vision; Klette, Koschan, Schlüns: Computer Vision: Three-Dimensional Data from Images; Hartley/Zisserman: Multiple Viewpoint Geometry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die wesentlichen Grundlagen der 3D-Bildverarbeitung, der Photogrammetrie sowie die hierfür benötigten linearen und nichtlinearen Optimierungsverfahren. Die Studierenden können Aufgabenstellungen für Systeme zur 3D-Szenerekonstruktion aus unterschiedlichen Anwendungsbereichen einordnen und selbständig mit eigenständig ausgewählter Methodik lösen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
</tr>
<tr>
<td>Studienleistungen:</td>
</tr>
<tr>
<td>• keine</td>
</tr>
<tr>
<td>Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen und -leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Modulprüfung</td>
</tr>
<tr>
<td>☐ Teilleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Gute Kenntnisse in linearer Algebra sowie linearer und nichtlinearer Optimierung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. rer. nat. Christian Wöhler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Modul 2-15: SATELLITENKOMMUNIKATIONSTECHNIK

Modulhandbuch Master Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Satellitenkommunikationstechnik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Satellitenkommunikationstechnik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Einleitung
 - a) Technische Systeme im Weltraum
 - b) Geschichte der Satellitentechnik
 - c) Anwendung von Satelliten

2. Kepler-Orbits
 - a) Keplersche Gesetze
 - b) Die Erde im Raum
 - c) Satellitenbahnen im Raum
 - d) Terrestrische Perspektive
 - e) Klassifikation von Satellitenbahnen
 - f) Geostationäre Satellitenbahnen

3. Weltraumfunkverbindungen
 - a) Grundprinzip
 - b) Signalübertragung
 - c) Rauschen
 - d) Signal-Rauschabstand
 - e) Einfluss der Erdatmosphäre
 - f) Kombinierte Übertragungsstrecken

4. Signalübertragung
 - a) Basisbandmodell
 - b) Synchron Signale
 - c) Bandbegrenzung
 - d) Detektion

5. Modulation
 - a) Direct Sequence Spread Spectrum (DSSS)
 - b) Binary Offset Carrier Modulation (BOC)
 - c) Lineare Modulation

6. Codierung
 - a) Quellcodierung
 - b) Kanalcodierung

4 Kompetenzen

Literatur

Den Studierenden wird ein umfassendes deutschsprachiges Vorlesungsskript zur Verfügung stellt. Ergänzend werden folgende Lehrbücher empfohlen:

- Proakis, Salehi: Digital Communications (5th Edition)
<table>
<thead>
<tr>
<th></th>
<th>Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
</tr>
<tr>
<td></td>
<td>Studienleistungen: keine</td>
</tr>
<tr>
<td></td>
<td>Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsformen und –leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☒ Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>☐ Teilleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfohlene Voraussetzungen: Gute Kenntnisse in den Grundlagen der Nachrichtentechnik und der Hochfrequenztechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modultyp und Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien­­schwerpunkt „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r</th>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Klaus Meng</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
<td>Typ</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>Scheduling Problems and Solutions Vorlesung</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>Scheduling Problems and Solutions Übung</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>Scheduling Problems and Solutions Praktikum</td>
<td>P</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache
Englisch

3 Lehrinhalte
1. Basics: terminology (three-field-description), classification, complexity, reducibility
2. Single Machine Models: completion time, due date related objectives, and multiple objectives
3. Online Scheduling: competitive analysis, non clairvoyant scheduling
4. Parallel Machine Models: makespan, completion time both with and without preemption
5. Shop Systems: flow shop, job shop, open shop
6. Solution of scheduling problems in practice: Integer Linear Programming

Literatur

4 Kompetenzen
Nach erfolgreichem Abschluss können die Studierenden Schedulingprobleme klassifizieren und geeignete Verfahren für ihre Bearbeitung anwenden. Sie sind in der Lage, Lösungsverfahren hinsichtlich ihrer Effizienz zu beurteilen und für komplexe Schedulingprobleme neue Lösungsmethoden auf Grundlage der klassischen Verfahren zu entwickeln.

5 Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten)*
Studienleistungen: Erfolgreiches Absolvieren der Praktikumsversuche in Element 3
Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.

6 Prüfungsformen und -leistungen
- [x] Modulprüfung
- [] Teilleistungen

7 Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Gute Kenntnisse in Grundlagen der diskreten Mathematik und Grundlagen von Algorithmen

8 Modultyp und Verwendbarkeit des Moduls

9 Modulbeauftragte/r
Prof. Dr.-Ing. Uwe Schwiegelshohn

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-17: HOCHFREQUENZELEKTRONIK

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hochfrequenzelektronik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Hochfrequenzelektronik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache
Deutsch

3 Lehrinhalte
1. Hochfrequenzbauelemente (Bipolare HF-Transistoren, HF-Feldeffekttransistoren, PIN-Dioden, Mikromechanische Hochfrequenzkomponenten)
2. Analog Hochfrequenzschaltungen (Verstärkerschaltungen, Mischer, Oszillatoren)
3. Digitale Hochfrequenzschaltungen (Analog-Digital-Wandler, Phasenregelkreise)
4. Anwendungsspezifische Schaltkreise der Hochfrequenztechnik

4 Kompetenzen
Nach erfolgreichem Abschluss sind die Studierenden in der Lage, die physikalischen Eigenschaften und die Funktionsweise von Bauelementen als auch der Schaltungen der Hochfrequenztechnik zu verstehen sowie mit geeigneten Modellen zu beschreiben und zu entwerfen.

5 Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

7 Teilnahmevoraussetzungen
Keine

8 Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkte „Mikrosystemtechnik und Mikroelektronik“ und „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-309

9 Modulbeauftragte/r
PD. Dr.-Ing. Dirk Schulz

Zuständiger Fachbereich
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-18: METHODS OF INFORMATION TECHNOLOGY: POSITIONING AND SPATIAL ESTIMATION

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>10</td>
<td>70 h</td>
<td>230 h</td>
</tr>
</tbody>
</table>

1. **Modulstruktur**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methoden der Informationstechnik Vorlesung</td>
<td>V</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Methoden der Informationstechnik Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

2. **Lehrveranstaltungssprache**

Englisch

3. **Lehrinhalte**

1. Einführung: Positionierung (GPS), Inertiale Navigationssysteme (INS),
2. Methoden basierend auf Raum-/Frequenz-Schätzung (SFE: Space Frequency Estimation)
3. Methoden basierend auf Kalman Filter und Least Squares
4. Beispiele: GPS, INS, SFE Positionierung, Positionierung in Mobilfunksystemen
5. Kombinierte Methoden: GPS, Mobilfunksysteme, INS, SFE Integration, D-GPS, A-GPS
6. Aufwandsreduktion der Algorithmen für hardwarenahe Implementierung

Literatur

4. **Kompetenzen**

5. **Prüfungen**

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6. **Prüfungsformen und -leistungen**

- Modulprüfung
- Teilleistungen

7. **Teilnahmeverzichtswohnungen**

Keine

8. **Modultyp und Verwendbarkeit des Moduls**

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Informations- und Kommunikationstechnik“ sowie „Robotik und Automotive“

9. **Modulbeauftragte/r**

Prof. Dr.-Ing. Jürgen Götze

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 2-19: LOCAL NETWORKS - COMMUNICATION AND CONTROL

ETIT-238

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local Networks - Communication and Control Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Local Networks - Communication and Control Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Englisch

Lehrinhalte

2. Systembeispiele leitungsgebundener Netzwerke: CAN-Bus, Ethernet, MOST, USB
3. Systembeispiele drahtloser Netzwerke: WLAN, Bluetooth, Zigbee

Literatur

Surgeon: Ethernet
Rech: Wireless LANs
Miller, Bisdikian: Bluetooth Revealed

Kompetenzen

Nach erfolgreichem Abschluss sind die Studierenden in der Lage, die unterschiedlichen Konzepte für lokale Netzwerke hinsichtlich ihrer Leistungsfähigkeit zu bewerten, existierende Standards zu verstehen und Systeme aufzubauen sowie aktuelle Weiterentwicklungen der Technologie zu beurteilen.

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Studienleistungen: keine

Die genauenen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen

Keine

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Informations- und Kommunikationstechnik“ sowie „Robotik und Automotive“.

Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-310

Modulbeauftragte/r

Prof. Dr.-Ing. Rüdiger Kays

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Halbleiterechnologie Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Halbleiterechnologie Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungssprache | Deutsch |

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kristallziehverfahren und Herstellung von Wafern</td>
</tr>
<tr>
<td>2. Oxidationsverfahren</td>
</tr>
<tr>
<td>3. Lithographie</td>
</tr>
<tr>
<td>4. Ätzverfahren</td>
</tr>
<tr>
<td>5. Legierung und Diffusion</td>
</tr>
<tr>
<td>6. Ionenimplantation</td>
</tr>
<tr>
<td>7. CVD-Depositionsverfahren</td>
</tr>
<tr>
<td>8. Epitaxie</td>
</tr>
<tr>
<td>9. Physikalische Depositionsverfahren</td>
</tr>
<tr>
<td>10. MOS- und CMOS-Prozesse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilleringmann: Silizium-Halbleiterechnologie; Schumicki, Seegelbrecht: Prozeßtechnologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss des Moduls kennen die Studierenden die grundlegenden Prozesse zur Herstellung von Halbleiter-ICs und mikroelektromechanischen Systemen (MEMS).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
</tr>
<tr>
<td>Studienleistungen: keine</td>
</tr>
<tr>
<td>*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen und -leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Modulprüfung</td>
</tr>
<tr>
<td>☐ Teilleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Ausreichende Kenntnisse in Grundlagen der Elektrotechnik, Halbleiterbauelemente und Werkstoffe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Mikrosystemtechnik und Mikroelektronik“ und „Robotik und Automotive“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan/-in der Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Modul 2-21: MIKROSYSTEMINTEGRATION

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mikrosystemintegration Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mikrosystemintegration Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrlinhalte
1. Grundlagen der MEMS-Technologie
2. Sensoren und Aktoren
3. Ausleseschaltungen und Systemintegration

Literatur
Mescheder, Ulrich: Mikrosystemtechnik: Konzepte und Anwendungen

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- ☐ Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Ausreichende Kenntnisse in Werkstoffe der Elektrotechnik, Halbleiterbauelemente, Halbleitertechnologie und Physik

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien-schwerpunkt „Mikrosystemtechnik und Mikroelektronik“

Modulbeauftragte/r
Dekan/-in der Fakultät für Elektrotechnik und Informationstechnik

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik

Turnus
Jährlich zum SS

Dauer
1 Semester

Studienabschnitt
2. Semester

LP
5

Präsenzanteil
35 h

Eigenstudium
115 h
Modul 2-22: MIKROSTRUKTURTECHNIK

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mikrostrukturtechnik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mikrostrukturtechnik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsprache
Deutsch

Lehrinhalte
1. Basistechnologien der Mikrostrukturtechnik
2. Vakuumtechnik
3. Beschichtungstechniken
4. Ätztechniken
5. Lithographieverfahren
6. Silizium-Mikromechanik
7. LIGA -Technik
8. Aufbau und Verbindungstechniken
9. Technologien der Mikrofluidik

Literatur
Menz, Mohr: Mikrosystemtechnik für Ingenieure;
Madou: Fundamentals of Microfabrication

Kompetenzen
Nach erfolgreichem Abschluss des Moduls kennen die Studierenden die grundlegenden Verfahren der Mikrostrukturierung und können diese zur Herstellung von Mikrokomponenten aus Silizium, Kunststoffen oder Metallen einsetzen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Ausreichende Kenntnisse in Grundlagen der Elektrotechnik, Halbleiterbauelemente und Werkstoffe

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Mikrosystemtechnik und Mikroelektronik“

Modulbeauftragte/r
Vertretungsprof. Dr.-Ing. Evelyn Drabiniok

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-23: EMV IM KRAFTFAHRZEUG

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 **Modulstruktur**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMV im Kraftfahrzeug (Vorlesung)</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>EMV im Kraftfahrzeug (Übung)</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 **Lehrveranstaltungssprache**

Deutsch

3 **Lehrinhalte**

1. Typische Störsenken und Störquellen, allgemeine Koppelmodelle
2. Kopplungen - Theorie, Beispiele und Abhilfemaßnahmen
3. Leitungsmodelle, geschirmte Leitungen und Transferimpedanz
4. Störungen durch getaktete Leistungslektronik PWM- und Prozessorenstörungen
5. Kfz-Antennen - Aufbau und spezifische Probleme
6. Spezielle Kfz-EMV-Mess- und Prüfverfahren
7. Mess- und Prüfvorschriften, Normung
8. Komponenten- und Fahrzeug-Berechnungsverfahren für EMV-Probleme-EMV
9. EMV von Elektrofahrzeugen
10. Filterung, Masseanbindung und Schirmung

Literatur

Kürner, Schwab: Elektromagnetische Verträglichkeit, Springer
Paul: Introduction to Electromagnetic Compatibility, Wiley

4 **Kompetenzen**

Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die wesentlichen Grundlagen und Methoden zur Analyse der Elektromagnetischen Verträglichkeit (EMV) sowie Maßnahmen zur Abhilfe. Aufgabenstellungen zur EMV können die Studierenden einordnen und selbständig mit eigenständig ausgewählter Methodik lösen.

5 **Prüfung**

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)

Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 **Prüfungsformen und –leistungen**

- Modulprüfung

7 **Teilnahmevoraussetzungen**

Keine

8 **Modultyp und Verwendbarkeit des Moduls**

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Robotik und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“ und „Elektrische Energie technik“. Referenzmodulnummer: MB-311

9 **Modulbeauftragte/r**

Prof. Dr.-Ing. Stephan Frei

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mehrgrößensysteme und optimale Regelung Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mehrgrößensysteme und optimale Regelung Übung</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Lerninhalte
1. Mehrgrößensysteme im Zeit- und Frequenzbereich
2. Zustandsregler und Entwurfsverfahren
3. Beobachterentwurf, reduzierter Beobachter
4. Entkopplungsregler im Zeit- und Frequenzbereich
5. Riccati-Optimalregler
6. Optimierung dynamischer Systeme
7. Zeitoptimale Regelung

Literatur
Lunze: Regelungstechnik 2; Föllinger: Optimale Regelung und Steuerung

Kompetenzen
Nach erfolgreichem Abschluss des Moduls, beherrschen die Studierenden die Grundlagen der optimalen und Mehrgrößenregelung. Die Studierenden können Aufgabenstellungen zur optimalen Regelung und Mehrgrößenregelung einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnehmervoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien-
 schwerpunkt „Robotic und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschaft-
 singenieurwesen, empfohlener Schwerpunkt „Informationstechnik“ und „Elektrische Energie-
 technik“, Referenzmodulnummer: MB-376

Modulbeauftragte/r
Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-30: SIGNAL-INTEGRITY

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal-Integrity: Effekte beim Einsatz nano-/mikroelektronischer Komponenten auf Leiterplatten Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Signal-Integrity: Effekte beim Einsatz nano-/mikroelektronischer Komponenten auf Leiterplatten Übung</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte

1. SI-Effekte beim Einsatz von nano-/mikroelektronischen Komponenten auf Leiterplatten (Einführung)
2. Problemstellung SI-EDA im Leiterplattenentwurf
3. Grundlagen zur SI-Analyse
4. Bauelementstechnologie und SI-Effekte (nano-/mikroelektronischen Komponenten)
5. HighSpeed-Verhalten von digitalen Bauelementen
6. Leitungen auf Leiterplatten und HighSpeed-Verhalten von digitalen Bauelementen
7. Reflexion/Crosstalk und Leitungsabschlüsse (Einflüsse der geometrischen und elektrischen Parameter auf den Spannungsverlauf)
8. Leitungsnetze auf Printed Circuit Boards

Lernziele

- Behandlung von Signal-Integrity-Problemen auf Leiterplatten
- Anforderungen an den Entwurf und die Anwendung nano-/mikroelektronischer Systeme
- Grundlagen der Modellierung und Simulation von passiven SiP-Komponenten
- Einsatz von Bauelementstechnologien und SI-Effekte
- Einsatz moderner Feldberechnungsverfahren
- Verfahren zur Package-Modellierung
- Analyse von Verdrahtungsstrukturen für HighSpeed-Anwendungen
- Anwendung aktueller Simulations- und Analyseverfahren.

Literatur

H. Müller; Eugen G.: Hochtechnologie-Multilayer; Leuze Verlag; 1988
Charles S. Walker: Capacitance, Inductance and Crosstalk Analysis; 1990
Howard W. Johnson – Martin Graham : High-Speed Digital Design; 1993
B. Young: Digital Signal Integrity; 2001

Kompetenzen

Nach erfolgreichem Abschluss des Moduls kennen die Studierenden die wesentlichen Methoden zur Behandlung von Signal-Integrity-Problemen beim Einsatz von nano-/mikroelektronischen Komponenten auf Leiterplatten. Sie sind mit dem SI-gerechten Entwurf von High-Speed-Leiterplatten als Bestandteil der Entwicklungsphasen Logikentwurf, Platzierung und Entwurfsvalidierung (Simulation/Messtechnik) vertraut und können auftretende SI-Fragestellungen charakterisieren, Entwurfsvarianten beurteilen sowie Optimierungsansätze formulieren.

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Stu-
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>dienleistungen: keine</td>
<td></td>
</tr>
<tr>
<td>Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prüfungsformen und -leistungen</td>
</tr>
<tr>
<td>☒ Modulprüfung</td>
<td></td>
</tr>
<tr>
<td>☐ Teilleistungen</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Teilnahmekriterien (Teilnahmevoraussetzungen)</td>
</tr>
<tr>
<td>Notwendige Kenntnisse: Grundlagen E-Technik – Grundlagen elektrische Messtechnik - Grundlagen Mikroelektronik/Schaltungstechnik</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Modultyp und Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Wahlpflichtmodul im Masterstudiengang Elektrotechnik und Informationstechnik, Studien- schwerpunkt Mikrosystemtechnik und Mikroelektronik</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Modulbeauftragte/r</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Stephan Frei</td>
<td></td>
</tr>
<tr>
<td>Lehrbeauftragte/r</td>
<td></td>
</tr>
<tr>
<td>Dr.-Ing. Werner John</td>
<td></td>
</tr>
<tr>
<td>Zuständige Fakultät</td>
<td></td>
</tr>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
<td></td>
</tr>
</tbody>
</table>
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mobile Roboter Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Mobile Roboter Übung</td>
<td>U</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrinhalte

1. Robot Operating System (ROS)
2. Robotics System Toolbox Matlab
3. Sensoren, Aktuatoren und Kinematik mobiler Roboter
4. Homing und Trajektorienfolgeregulierung
5. Hindernisvermeidung (Vector Field Histogram)
6. Monte Carlo Lokalisation
7. Pfadplanung (Rapidly Exploring Random Trees, Probabilistic Roadmap)
9. Online Trajektorienplanung (Timed Elastic Bands)

Literatur
- Siciliano, Khatib: Springer Handbook of Robotics
- ausgewählte Artikel zur mobilen Robotik aus Konferenzen und Zeitschriften

Kompetenzen

Prüfungen

Modulprüfung: Klausur (max. 180 Minuten)

Studienleistungen:
- Erfolgreiche Bearbeitung von mindestens 75% der praktischen Übungen in ROS/Matlab zur Programmierung mobiler Roboter

Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.

Prüfungsformen und -leistungen

- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkt „Robotik und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohler Schwerpunkt „Informationstechnik“ und „Elektrische Energie-technik“, Referenzmodulnummer: MB-313

Modulbeauftragte/r
apl. Prof. Dr. rer. nat. Frank Hoffmann

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-31: MEDIZINTECHNIK

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1. **Modulstruktur**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medizintechnik Vorlesung</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Medizintechnik Übung</td>
<td>S</td>
<td>2</td>
</tr>
</tbody>
</table>

2. **Lehrveranstaltungssprache**

Deutsch

3. **Lehrinhalte**

1. Messtechnik & Sensorik
 a. Ein-/Ausgangsgrößen
 b. Signalverarbeitung in der Medizintechnik
2. Medizinische Geräte
 a. Funktionale Geräte
 b. Überwachung
 c. Diagnostik
 d. Analytik
 e. Therapie
3. Anforderungen
 a. Medizingeräteverordnung
 b. Zulassungsverfahren
 c. Ethische Aspekte

Literatur

Kramme: Medizintechnik;
Below: Medizinische Gerätetechnik

4. **Kompetenzen**

5. **Prüfungen**

Teilleistungen: Präsentation (max. 15 Minuten) und mündliche Prüfung (max. 15 Minuten)

Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6. **Prüfungsformen und -leistungen**

- [] Modulprüfung
 - [x] Teilleistungen

7. **Teilnahmevoraussetzungen**

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in Grundlagen der Elektrotechnik, Halbleiterbauelemente und Werkstoffe

8. **Modultyp und Verwendbarkeit des Moduls**

9. **Modulbeauftragte/r**

Dr.-Ing. Evelyn Drabiniok

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Moderne Leistungshalbleiter Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Moderne Leistungshalbleiter Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Charakterisierung von Leistungshalbleitern Praktikum</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Lehrinhalte

1. Anforderungen an Leistungshalbleiter
2. Grundlagen der Halbleiterphysik
3. PIN-Leistungsdioden und SiC-Schottky-Dioden
4. Leistungs-MOSFETs einschließlich Superjunction-MOSFETs
5. Integrierte Leistungstechnologien
6. Insulated Gate Bipolar Transistors (IGBTs)
7. High Electron Mobility Transistors (HEMTs)
8. Sicherer Arbeitsbereich und Zuverlässigkeitsaspekte
9. Zentrale Messverfahren für Charakteristika und Schaltverhalten
10. Packaging

Literatur
Schröder: Leistungselektronische Bauelemente
Lutz: Halbleiter-Leistungsbaulemente
Linder: Power Semiconductors

Kompetenzen

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die Prüfung kann gemeinsam mit dem Modul ETIT-286 (SCHNELLSCHALTENDE LEISTUNGS-ELEKTRONISCHE SYSTEME) abgelegt werden
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

☐ Modulprüfung
☐ Teilteilbeiten

Teilnahmevoraussetzungen

Empfohlene Kenntnisse: Grundkenntnisse zu Halbleiterbauelementen

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“ Schwerpunkte „Elektrische Energietechnik“ und „Mikrosystemtechnik und Mikroelektronik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-328

Modulbeauftragte/r

Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik (8)
Modul 2-33: SCHNELLSCHALTENDE LEISTUNGSLELEKTRONISCHE SYSTEME

Modulhandbuch Master Elektrotechnik und Informationstechnik

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schnellschaltende leistungselektronische Systeme Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Schnellschaltende leistungselektronische Systeme Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Messtechnische Untersuchung und Optimierung leistungs-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>elektronischer Systeme Praktikum</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungsprache Deutsch

3 Lehrinhalte

1. Anforderungen an leistungselektronische Systeme
2. Grundkonzepte und Komponenten der Leistungselektronik
3. Schaltvorgänge und Schaltverluste
4. Schnellschaltende verlustarme Wandler
5. Resonante und weichschaltende Wandler
6. Ansteuerung von Leistungshalbleitern
7. Einfluss des Aufbaus und parasitäre Effekte
8. Ausgewählte Topologien und Realisierungsaspekte

4 Kompetenzen

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die Prüfung kann gemeinsam mit dem Modul ETIT-285 (MODERNE LEISTUNGSHALBLEITER) abgelegt werden
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

☒ Modulprüfung

☐ Teilleistungen

7 Teilnahmeverfahren

Empfohlene Kenntnisse: Grundkenntnisse der Leistungselektronik

8 Modultyp und Verwendbarkeit des Moduls

9 Modulbeauftragte/r

Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik (8)
Modul 2-34: REMOTE SENSING

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remote Sensing Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Remote Sensing Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch/Englisch nach Bedarf

Lehrinhalte
1. Sensorsysteme zur Aufnahme von Luft- und Satellitenbildern
2. Eigenschaften von Luft- und Satellitenbildern in unterschiedlichen Spektralbereichen
3. Korrekturverfahren für atmosphärische und topographische Effekte
4. Verfahren zur Analyse von Bilddateien in Remote-Sensing-Anwendungen
5. Verfahren zur Analyse von Spektraldaten in Remote-Sensing-Anwendungen
6. Orthorektifizierung, Georeferenzierung und Koregistrierung von Luft- und Satellitenbildern
7. Klassifikationsverfahren für Multi- und Hyperspektralbilddateien
8. Praktische Anwendungsbeispiele aus der aktuellen Forschung

Literatur

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Kenntnisse: Ausreichende Kenntnisse in Grundlagen der Elektrotechnik, Signalverarbeitung, Bildverarbeitung

Modultyp und Verwendbarkeit des Moduls

Modulbeauftragte/r
Prof. Dr. rer. nat. Christian Wöhler

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-35: AUSGEWÄHLTE KAPITEL DER HOCHSPANNUNGSTECHNIK

<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th>ETIT-288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>1</td>
<td>Ausgewählte Kapitel der Hochspannungstechnik Vorlesung</td>
</tr>
<tr>
<td>2</td>
<td>Ausgewählte Kapitel der Hochspannungstechnik Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum SS</td>
<td>1 Semester</td>
<td>2. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

Lehrinhalte
1. Anforderungen an Betriebsmittel der Hochspannungstechnik
2. Technologie, Aufbau und Auslegung
3. Isoliersysteme für DC
4. Diagnoseverfahren und Technologietrends
5. Beispiele und Anwendungen aus der Praxis

Literatur
Kuffel: High Voltage Engineering Fundamentals, Küchler: Hochspannungstechnik

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Ausreichende Kenntnisse in der Energietechnik, wie sie z.B. durch Teilnahme am Basismodul „FELD- UND NETZWERKBASIERTE MODELLIERUNG“ erworben werden können.

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Elektrische Energetechnik“, Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Elektrische Energetechnik“, Referenzmodulnummer: MB-330

Modulbeauftragte/r
Prof. Dr.-Ing. Frank Jenau
Lehrbeauftragte/r
Dr.-Ing. Michael Freiburg

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 2-36: AUTOMOTIVE SYSTEMS I

<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th>Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element /</td>
<td>Typ</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Automotive</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Systems I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Automotive</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Systems I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungssemester</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jährlich zum SS</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Studienabschnitt</td>
<td>2. Semester</td>
</tr>
<tr>
<td>LP</td>
<td>5</td>
</tr>
<tr>
<td>Präsenzanteil</td>
<td>35 h</td>
</tr>
<tr>
<td>Eigenstudium</td>
<td>115 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>Automotive Systems I Vorlesung</td>
</tr>
<tr>
<td>Automotive Systems I Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fahrdynamik (Reifen, Längs-, Quer-, Vertikaldynamik von Fahrzeugen)</td>
</tr>
<tr>
<td>2. Aktoren des mechatronischen Kraftfahrzeugs (Lenk-, Bremsysteme, Antriebsstrang)</td>
</tr>
<tr>
<td>3. Sensoren für fahrzeuginterne Größen (Beschleunigung, Gierrate, Lenkwinkel, Lenkmoment, Raddrehzahl, Sensordatenverarbeitung)</td>
</tr>
<tr>
<td>4. Fahrstabilisierungssysteme (Brems-, Antriebsschlußfregelsysteme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitschke, M., H. Wallentowitz: Dynamik der Kraftfahrzeuge (Springer)</td>
</tr>
<tr>
<td>Meywerk, M.: Vehicle Dynamics (Wiley)</td>
</tr>
<tr>
<td>Winner, H., S. Hakuli, G. Wolf (Hg.): Handbuch der Fahrerassistenzsysteme (Vieweg+Teubner)</td>
</tr>
<tr>
<td>Braess, H.-H., U. Seiffert (Hg.): Handbuch Kraftfahrzeugtechnik (Vieweg)</td>
</tr>
<tr>
<td>Isermann, R. (Hg.): Fahrzeugdynamik-Regelung (Springer-Vieweg)</td>
</tr>
<tr>
<td>Rajamani, R.: Vehicle Dynamics and Control (Springer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss des Moduls besitzen die Studierenden tiefergehende Kenntnisse im Bereich der Fahrdynamikregelung (Physik, Sensoren zur Erfassung der fahrdynamischen Größen des Ego-Fahrzeugs, Aktoren, Modellbildung, Simulation, Regelung, Optimierung). Die Studierenden können Aufgabenstellungen zur Fahrdynamikregelung einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
</tr>
<tr>
<td>Studienleistungen: keine</td>
</tr>
</tbody>
</table>

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

<table>
<thead>
<tr>
<th>Prüfungsformen und -leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Modulprüfung</td>
</tr>
<tr>
<td>☐ Teilleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Grundkenntnisse der Mechatronik und Mechanik.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>

52
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sichere Kommunikationstechnik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Sichere Kommunikationstechnik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Einleitung: Schutzziele
2. Kryptologie: Symmetrische Verfahren
4. Hashfunktionen
5. Sicherheitskonzepte und Protokolle
6. Sicherheit in drahtlosen Netzwerken
7. Zusammenfassung

Literatur
- Paar, Pelzl: Understanding Cryptography
- Eckert: IT-Sicherheit
- Sorge: Sicherheit in Kommunikationsnetzen
- Esslinger et al.: Das Cryptool-Buch: Kryptographie lernen und anwenden mit Cryptool und SageMath

Kompetenzen
Nach erfolgreichem Abschluss sind die Studierenden in der Lage, die Problematik sicherer und zuverlässiger Kommunikationssysteme zu erkennen, Lösungsansätze zu verstehen und weiter zu entwickeln sowie relevante Standards nachvollziehen zu können.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 30 Minuten) oder Klausur (max. 90 Minuten)

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- ✔️ Modulprüfung
- □ Teilleistungen

Teilnahmeveraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Informations- und Kommunikationstechnik“

Modulbeauftragte/r
Prof. Dr.-Ing. Rüdiger Kays

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smart Grids Lecture</td>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Smart Grids Presentation</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Englisch

Lehrinhalte

In the past years the energy system has changed drastically. Due to environmental and political reasons, the power generation from renewable energy resources is increasing while conventional power plants are being shut down. This not only means a change of adopted technologies but also a change of the power flow direction in the electrical grid. The uncertainties of the renewable energy resources have to be properly dealt with using appropriate strategies, algorithms and technologies. This has to be done in order to avoid system instabilities causing complete or partial system blackouts.

This course will handle the following aspects of the changing electrical energy network:

1. Renewable Energy Technologies
2. Distribution Grid Planning
3. Flexibility and Smart Meters
4. Voltage Regulation
5. State Estimation
6. Protection and control functions
7. Grid Automation
8. Electro-mobility

Literatur

DENA Ancillary Services 2030 Study: Download [DENA Ancillary Services 2030 Study](https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Energiesysteme/dena-Studie_Systemdienstleistungen_2030/dena_Ancillary_Services_Study_2030.pdf)

Kompetenzen

The students successfully finishing the course should be able to

- understand the challenges in today's and future electrical energy distribution grids
- comprehend the multiple areas of research done in the distribution grids
- develop new solution approaches for energy system problems based on their acquired knowledge.

Prüfungen

Modulprüfung: mündliche Prüfung (max. 30 Minuten) oder Klausur (max. 90 Minuten)*

Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung
 - Teilinhalte

Teilnahmevoraussetzungen

Grundkenntnisse in Elektrischer Energietechnik

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Elektrische Energietechnik“

Modulbeauftragte/r

Dr.-Ing. Ulf Häger

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 3-28: LEARNING IN ROBOTICS (LERNENDE ROBOTER)

<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
<td>Typ</td>
</tr>
<tr>
<td>1</td>
<td>Learning in Robotics (Lernende Roboter) Vorlesung</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>Learning in Robotics (Lernende Roboter) Übung</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungssprache</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grundlagen des Maschinellen Lernens</td>
<td></td>
</tr>
<tr>
<td>2. Nichtlineare Regression</td>
<td></td>
</tr>
<tr>
<td>3. Künstliche Neuronale Netze</td>
<td></td>
</tr>
<tr>
<td>4. Deep Learning</td>
<td></td>
</tr>
<tr>
<td>5. Verstärkendes Lernen (Reinforcement Learning)</td>
<td></td>
</tr>
<tr>
<td>6. Lernen durch Demonstration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvain Calinon: Robot programming by demonstration: a probabilistic approach, 2009</td>
<td></td>
</tr>
<tr>
<td>Richard Sutton, Andrew G. Barton, Reinforcement Learning an Introduction, 2nd edition, MIT Press, 2018</td>
<td></td>
</tr>
<tr>
<td>ausgewählte Veröffentlichungen aus Zeitschriften und Konferenzen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die wesentlichen theoretischen und praktischen Methoden des maschinellen Lernens in der Robotik. Studierende können Aufgabenstellungen zu neuronalen Netzen, verstärkendem Lernen und Lernen durch Demonstration selbständig mit ausgewählten Methoden und Algorithmen in ROS/Matlab lösen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
<td></td>
</tr>
<tr>
<td>Studienleistungen: keine</td>
<td></td>
</tr>
<tr>
<td>*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen und -leistungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Modulprüfung</td>
<td></td>
</tr>
<tr>
<td>□ Teilleistungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien­ schwerpunkt „Robotik und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschafts­ singenieurwesen, empfohlener Schwerpunkt „Informationstechnik“ und „Elektrische Energie­ technik“, Referenzmodulnummer: MB-382</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>apl. Prof. Dr. rer. nat. Frank Hoffmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Fakultät</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
<td></td>
</tr>
</tbody>
</table>
PROJEKTGRUPPE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Projektgruppe</td>
<td>P</td>
<td>--</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch oder Englisch

Lehrinhalte
1. Gliederung einer wissenschaftlichen Aufgabenstellung in Einzelaufgaben
2. Aufteilung der Einzelaufgaben auf kleine Untergruppen
3. Bearbeitung der Einzelaufgaben innerhalb einer Untergruppe
4. Koordination der Arbeiten mit den anderen Untergruppen
5. Zusammenführung der Ergebnisse zu einem Endergebnis
6. Kritische Würdigung der Ergebnisse

Das wissenschaftliche Thema der Projektgruppe muss ein Gebiet der Elektrotechnik und Informationstechnik betreffen.

Kompetenzen

Prüfungen
Die Betreuerinnen oder Betreuer der Projektgruppe überprüfen die Leistungen der einzelnen Studierenden.

Teilnahmevoraussetzungen
Die fachlichen Voraussetzungen für die Projektgruppe sind themenabhängig und werden bei der Ausschreibung der Projektgruppe spezifiziert.

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan/-in der Fakultät für Elektrotechnik und Informationstechnik</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
<tr>
<td>Modul 3-30: OBERSEMINAR</td>
<td>ETIT-281</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Turnus</td>
<td>Dauer</td>
</tr>
<tr>
<td>Halbjährlich</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Modulstruktur</td>
<td>2</td>
</tr>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>1</td>
<td>Oberseminar</td>
</tr>
<tr>
<td>2 Lehrveranstaltungssprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>3 Lehrinhalte</td>
<td>1. Erarbeitung des Inhaltes wissenschaftlicher Arbeiten</td>
</tr>
<tr>
<td></td>
<td>2. Darstellung wissenschaftlicher Arbeiten vor einem Fachpublikum</td>
</tr>
<tr>
<td></td>
<td>3. Diskussion wissenschaftlicher Thesen und Ergebnisse mit einem Fachpublikum</td>
</tr>
<tr>
<td></td>
<td>Das Gebiet, aus dem das wissenschaftliche Thema stammt, hängt von dem Themenbereich des Oberseminars ab.</td>
</tr>
<tr>
<td>5 Prüfungen</td>
<td>Der Abschlussvortrag der oder des Studierenden ist die Modulprüfung. Daneben muss die oder der Studierende als Studienleistungen sich aktiv an mindestens fünf Vorträgen anderer Studierender beteiligen.</td>
</tr>
<tr>
<td>6 Prüfungsformen und –leistungen</td>
<td>☒ Modulprüfung (unbenotet)</td>
</tr>
<tr>
<td>7 Teilnahmeveraussetzungen</td>
<td>Empfohlene Voraussetzungen: Gute wissenschaftliche Kenntnisse in dem jeweiligen Gebiet des Oberseminars.</td>
</tr>
<tr>
<td>8 Modultyp und Verwendbarkeit des Moduls</td>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“</td>
</tr>
<tr>
<td>9 Modulbeauftragte/r</td>
<td>Zuständige Fakultät</td>
</tr>
<tr>
<td>Dekan/-in der Fakultät für Elektrotechnik und Informationstechnik</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
3. Semester
Modul 3-1: AUSGLEICHSVORGÄNGE IN ELEKTRISCHEN ANTRIEBEN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ausgleichsvorgänge in elektrischen Antrieben Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Ausgleichsvorgänge in elektrischen Antrieben Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Dynamisches Modell einer Asynchronmaschine
2. Park’sche Theorie der Synchronmaschine
3. Maschinen mit supraleitenden Wicklungen
4. Einsatz der Feldberechnung zur Ableitung der Maschinenmodelle
5. Transientes Antriebsverhalten im Netzbetrieb

Literatur
Seinsch: Ausgleichsvorgänge bei elektrischen Antrieben

Kompetenzen
Nach erfolgreichem Abschluss des Moduls haben die Studierenden Kenntnisse über die mathematische Beschreibung der wichtigsten elektrischen Antriebe und sind in der Lage, diese Systeme für den stationären und gestörten Betrieb zu analysieren. Die Studierenden haben außerdem anhand von Beispielen Dimensionsregeln für Antriebe im gestörten Betrieb erlernt und können diese anwenden.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
☒ Modulprüfung
☐ Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Ausreichende Kenntnisse in den Grundlagen der Energietechnik, Theoretischer Elektrotechnik, Elektrische Maschinen und Antriebe

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-331

Modulbeauftragte/r
Prof. Dr.-Ing. Martin Pfost
Lehrbeauftragte/r
Dr.-Ing. Christoph Schmülling

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-2: AUFBAU UND NETZBETRIEB VON WINDKRAFTANLAGEN

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jährlich zum WS</th>
<th>Dauer</th>
<th>1 Semester</th>
<th>Studienabschnitt</th>
<th>3. Semester</th>
<th>LP</th>
<th>5</th>
<th>Präsenzanteil</th>
<th>35 h</th>
<th>Eigenstudium</th>
<th>115 h</th>
</tr>
</thead>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aufbau und Netzbetrieb von Windkraftanlagen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Aufbau und Netzbetrieb von Windkraftanlagen Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache

Deutsch

3 Lehrinhalte

1. Geschichte der Windenergienutzung
2. Physikalische Grundlagen
3. Mechanisch-elektrische Energieumwandlung
4. Umrichtersysteme
5. Netzanschluss
6. Wirtschaftlichkeit

Literatur

Gasch, Twele: Windkraftanlagen

4 Kompetenzen

Neben der Beherrschung der physikalischen Grundlagen der Windenergienutzung haben die Studierenden nach erfolgreichem Abschluss des Moduls einen Überblick über die verschiedenen Möglichkeiten der praktischen Umsetzung. Sie kennen den Aufbau und die Funktionsweise verschiedener Windenergieanlagenkonzepte und besitzen Kenntnis über den Betrieb einer Windenergieanlage und deren Netzankopplung sowie über wirtschaftliche Aspekte.

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und -leistungen

☒ Modulprüfung
☐ Teilleistungen

7 Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in den Grundlagen der Energietechnik

8 Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-332

9 Modulbeauftragte/r

Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 3-5: OPTOSENSORIK FÜR ENERGIEANLAGEN

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optosensorik für Energieanlagen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Optosensorik für Energieanlagen Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Studienabschnitt

- 3. Semester

Dauer

- 1 Semester

Präsenzanteil

- 35 h

Eigenstudium

- 115 h

Turnus

- Jährlich zum WS

Dauer

- 1 Semester

Studienabschnitt

- 3. Semester

LP

- 5

Studienabschnitt

- 3. Semester

LP

- 5

Präsenzanteil

- 35 h

Eigenstudium

- 115 h

Modulprüfung

- Mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Studieneleistungen

- keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Lehrveranstaltungssprache

- Deutsch

Lehrinhalte

1. Mathematische Modellierung
2. Sensorische Effekte
3. Komponenten
4. Auswertungsverfahren
5. Anwendungsbeispiele

Literatur

- Yariv, Yeh: Optical waves in crystals;
- Udd: Fiber optic sensors;
- Bludau: Lichtwellenleiter in Sensorik und optischer Nachrichtentechnik;
- Lopéz-Higuera: Handbook of optical fibre sensing Technology

Kompetenzen

Nach erfolgreicher Absolvierung kennen die Studierenden die Einsatzmöglichkeiten und -grenzen optischer Sensoren als exemplarische Bestandteile von Überwachungs- und Schutzseinrichtungen. Sie können eigenständig optische Messanordnungen für gegebene Messaufgaben entwickeln und haben die Fähigkeit verschiedene Sensortechnologien bezüglich spezifischer Vor- und Nachteile zu bewerten.

Prüfungen

- Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

- Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen

- Empfohlene Voraussetzungen: Kenntnisse in den Grundlagen der Energietechnik

Modultyp und Verwendbarkeit des Moduls

- Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohler Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-333

Modulbeauftragte/r

- Prof. Dr.-Ing. Frank Jenau

Zuständige Fakultät

- Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Erneuerbare Energiequellen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Erneuerbare Energiequellen Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsprache
Deutsch

Lehrinhalte
1. Nutzung der Photovoltaik, der Solarthermie, der Biomasse, der Windenergie, der Geothermie, der Meeresenergie und Wasserkraft
2. Aspekte der Anlagenauslegung und Wirtschaftlichkeitsberechnung

Literatur
Kaltschmitt: Erneuerbare Energien

Kompetenzen
Nach erfolgreichem Abschluss des Moduls kennen die Studierenden die verschiedenen Energieumwandlungsverfahren und Technologien der regenerativen Energieerzeugung wie auch deren Potentiale und Grenzen. Darüber hinaus besitzen die Studierenden das Rüstzeug zum technischen und wirtschaftlichen optimierten Auslegen kleiner Anlagen.

Prüfungen

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Physikalisches Grundverständnis und Grundlagen der Energie-technik

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkt „Elektrische Energietechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Elektrische Energietechnik“, Referenzmodulnummer: MB-334

Modulbeauftragte/r
Prof. Dr.-Ing. Christian Rehtanz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Messtechnik für Photonische Netze Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Messtechnik für Photonische Netze Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Praktikumsversuche (2)</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte der Elemente 1 und 2
1. PLECS Mobil
2. Grundlagen optischer Messverfahren
3. Messtechnische Bestimmung von optischen Leistungen, Spektren, zeitaufgelösten Signalen
4. Charakterisierung von Komponenten
5. Experimentelle Bestimmung der Systemeigenschaften

Lehrinhalte von Element 3
Zwei Praktikumsversuche: Messung optischer Spektren und Charakterisierung optischer Verstärker

Literatur
Derickson: Fiber Optic Test and Measurement

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

Studienleistungen:
- Erfolgreiche Bearbeitung der beiden Praktikumsversuche in Element 3
- Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- [x] Modulprüfung
- [] Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Grundlagenkenntnisse zu optischer Übertragungstechnik sind hilfreich aber nicht zwingend erforderlich

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Informations- und Kommunikationstechnik“ sowie „Mikrosystemtechnik und Mikroelektronik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-314

Modulbeauftragte/r
Prof. Dr.-Ing. Peter Krummrich

Zuständiger Fachbereich
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-11: HOCHFREQUENZSYSTEME

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hochfrequenzsysteme Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Hochfrequenzsysteme Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache: Deutsch

Lehrinhalte:
1. Grundlagen der Wellenausbreitung
2. Antennen
3. Hochfrequenztechnische Anlagen und Systeme (Radarsysteme, Richtfunktechnik, Mobilfunktechnik, Satellitenkommunikation)
4. Messtechnik

Literatur
Voges: Hochfrequenztechnik,
Unger: Hochfrequenztechnik in Funk und Radar

Kompetenzen
Nach erfolgreichem Abschluss verfügen die Studierenden über die Kompetenz, Hochfrequenzsysteme zu konzipieren und zu bewerten. Dabei können die Studierenden diese Hochfrequenzsysteme insbesondere mit Bauelementen und Schaltungen der Hochfrequenztechnik entwerfen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studienschwerpunkte „Informations- und Kommunikationstechnik“ sowie „Mikrosystemtechnik und Mikroelektronik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-315

Modulbeauftragte/r
PD. Dr.-Ing. Dirk Schulz

Zuständiger Fachbereich
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-13: SATELLITENNAVIGATION

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Satellitennavigation Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Satellitennavigation Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache: Deutsch

3 Lehrinhalte

1. Grundlagen (Ortsbestimmung und Navigation; Kooperative Funkortung; Historische Entwicklung der Satellitennavigation; Funktionsprinzip eines GNSS; Zivile Anwendungen eines GNSS)
2. Bezugsysteme (Relativität von Raum und Zeit; Baryzentrisches System; Die Erdachse im Raum; ECI-System; Polbewegung; ECEF-System; Geoid; Geodätisches System; Transformationen; Objektbezogene Systeme; Zeitsysteme)
3. Orbits (Gestörte Keplersche Bahnen; Walker Konstellation; Dilution of Precision; Orbit Tracking; Almanach und Ephemeriden)
4. Links (Grundlagen; Atmosphärische Effekte; Relativistische Effekte; Einfluss der Empfangsanset; Mehrwegeausbreitung)
5. Signale und Empfänger (Modulationstechniken; Kalman-Filter; Navigationsempfänger; Gezielte Störungen)
6. Positionsbestimmung (Point Positioning; Relative Positioning)
7. Systeme (GPS, GLONASS; GALILEO; BEIDOU; COSPAS-SARSAT; QZSS; Differential GNSS; Augmented GNSS; Assisted GNSS)

5 Prüfungen

- **Modulprüfung:** mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
- **Studieneleistungen:** keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und –leistungen

- Modulprüfung

7 Teilnahmevoaussetzungen

Empfohlene Voraussetzungen: Kenntnisse der Satellitenkommunikationstechnik, wie sie in der gleichlautenden Lehrveranstaltung vermittelt werden

8 Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-316

9 Modulbeauftragte/r

Prof. Dr.-Ing. Klaus Meng

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Modul 3-16: KFZ-BORDNETZE

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kfz-Bordnetze Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Kfz-Bordnetze Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrinhalte
1. Übersicht Kfz-Elektroniksysteme
2. Datenübertragung und spezielle Kfz-Bussysteme
3. Leitungstheorie für die Analyse von Bordnetzen
4. Energieerzeugung und Übertragung im Kfz
5. Leistungselektronik im Kfz
6. Antriebstechnologien für Elektro- und Hybridfahrzeuge
7. Batterietechnologien für Elektrofahrzeuge
8. Der Fahrzeugentwicklungsprozess
9. Erprobungs- und Diagnoseaspekte

Literatur
- K. Reif: Automobilelektronik, ATZ/MTZ-Fachbuch
- H. Wallentowitz, K. Reif: Handbuch Kraftfahrzeugelektronik, ATZ/MTZ-Fachbuch

Kompetenzen
Nach erfolgreichem Abschluss des Moduls besitzen die Studierenden tiefer gehende Kenntnisse im Bereich der Automobilelektrotechnik/-elektronik. Die Studierenden können Aufgabenstellungen zur Automobiltechnik einordnen und selbständig mit eigenständig ausgewählter Methodik lösen.

Prüfungen
- Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
- Stundeneinspeisungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- [] Modulprüfung
- [] Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Robotic und Automotive“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohener Schwerpunkt „Informationstechnik“ und „Elektrische Energieotechnik“, Referenzmodulnummer: MB-316

Modulbeauftragte/r
- Prof. Dr.-Ing. Stephan Frei

Zuständige Fakultät
- Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technologien und Bauelemente der I. Optik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Technologien und Bauelemente der I. Optik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Einführung in die Integrierte Optik
2. Grundlagen der Lichtwellenleiteroptik
3. Materialien und Herstellungstechnologien integriert-optischer Wellenlenleiter
4. Grundbauelemente der Integrierten Optik
5. Integriert-optische Schalter und Modulatoren
6. Anwendungen integriert-optischer Komponenten in der Kommunikationstechnik und Sensorik

Literatur
Karthe, Müller: Integrierte Optik

Kompetenzen
Durch das Verständnis der wesentlichen Grundbauelemente der Integrierten Optik sind die Studierenden in der Lage, komplexe integriert-optische Schaltungen zu entwerfen. Sie besitzen zudem einen umfassenden Einblick in unterschiedliche Materialsysteme und Fertigungstechnologien zur Realisierung integriert-optischer Schaltungen. Weiterhin können sie beurteilen, in welchen Anwendungsfeldern der Kommunikationstechnik und Sensorik die unterschiedlichen Technologien zum Einsatz kommen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Mikrosystemtechnik und Mikroelektronik“

Modulbeauftragte/r
PD Dr.-Ing. Dirk Schulz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik

Modul 3-18: TECHNOLOGIEN UND BAUELEMENTE DER INTEGRIERTEN OPTIK

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul 3-18: TECHNOLOGIEN UND BAUELEMENTE DER INTEGRIERTEN OPTIK</th>
<th>ETIT-267</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Technologien und Bauelemente der I. Optik Vorlesung</td>
</tr>
<tr>
<td>2</td>
<td>Technologien und Bauelemente der I. Optik Übung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Einführung in die Integrierte Optik
2. Grundlagen der Lichtwellenleiteroptik
3. Materialien und Herstellungstechnologien integriert-optischer Wellenlenleiter
4. Grundbauelemente der Integrierten Optik
5. Integriert-optische Schalter und Modulatoren
6. Anwendungen integriert-optischer Komponenten in der Kommunikationstechnik und Sensorik

Literatur
Karthe, Müller: Integrierte Optik

Kompetenzen
Durch das Verständnis der wesentlichen Grundbauelemente der Integrierten Optik sind die Studierenden in der Lage, komplexe integriert-optische Schaltungen zu entwerfen. Sie besitzen zudem einen umfassenden Einblick in unterschiedliche Materialsysteme und Fertigungstechnologien zur Realisierung integriert-optischer Schaltungen. Weiterhin können sie beurteilen, in welchen Anwendungsfeldern der Kommunikationstechnik und Sensorik die unterschiedlichen Technologien zum Einsatz kommen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Mikrosystemtechnik und Mikroelektronik“

Modulbeauftragte/r
PD Dr.-Ing. Dirk Schulz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-22: NICHTLINEARE SYSTEME UND ADAPTIVE REGELUNG

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nichtlineare Systeme und adaptive Regelung Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Nichtlineare Systeme und adaptive Regelung Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache

Deutsch

Lehrinhalte

1. Nichtlineare Systeme: Statische Nichtlinearitäten, Kennlinienglieder, nichtlineare Regelungsstrukturen, Beschreibungsfunktion, Ruhelagen, Bifurkationen
2. Stabilität: Ljapunov-Stabilität, Kreiskriterium, Popov-Kriterium

Literatur

Khalil: Nonlinear Systems; Föllinger: Nichtlineare Regelungen I und II; Åström, Wittenmark: Adaptive Control; Adamy: Nichtlineare Regelungen

Kompetenzen

Nach erfolgreichem Abschluss des Moduls, besitzen die Studierenden tiefer gehende Kenntnisse im Bereich der nichtlinearen und adaptiven Regelung. Die Studierenden können Aufgabenstellungen zur nichtlinearen und adaptiven Regelung einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.

Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)

Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen

- Modulprüfung

Teilnahmevoraussetzungen

Keine

Modultyp und Verwendbarkeit des Moduls

Modulbeauftragte

Prof. Dr.-Ing. Prof. h.c. Dr.- h.c. Torsten Bertram

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digitale Quellencodierung Vorlesung</td>
<td>V</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lehrveranstaltungssprache
Deutsch

3 Lehrinhalte
1. Grundlagen der Quellencodierung: Quellen, Sinken, Dekorrelation, Quantisierung, Codierung
2. Dekorrelationstechniken: Techniken im Zeit- und Frequenzbereich
3. Funktionsblöcke moderner Quellencodierverfahren: Hybride DCT, Wavelets, Vektorquantisierung, Algebraische Codierung, Objektorientierte Codierung
4. Struktur von Codecs zur Audiocodierung (Sprachcodecs und generische Codecs), Standbildcodierung und Bewegtbildcodierung.
5. Ausgewählte Systembeispiele zur Bildcodierung (JPEG, MPEG-2, MPEG-4 AVC, HEVC) und Audiocodierung (MPEG-Audio, GSM-Codecs)

Literatur
Wang, Ostermann, Zhang: Video Processing and Communications;
Ohm, J.R.: Digitale Bildcodierung;
Bosi, M.; Goldberg, R.E.: Introduction to Digital Audio Coding and Standards

4 Kompetenzen
Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, Systeme der Quellencodierung zu analysieren und formal zu beschreiben, die Leistungsfähigkeit moderner Systeme zu beurteilen und Systeme und Algorithmen weiterzuentwickeln.
Die Berechnung in MATLAB und Darstellung in audiovisueller Form verdeutlicht den jeweiligen Themenschwerpunkt.

5 Prüfungen
* Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

6 Prüfungsformen und –leistungen
☒ Modulprüfung
☐ Teilleistungen

7 Teilnahmeveraussetzungen
Empfohlene Voraussetzungen: Grundkenntnisse der Nachrichtentechnik

8 Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Informations- und Kommunikationstechnik“. Wahlpflichtmodul im Masterstudiengang Wirtschaftsingenieurwesen, empfohlener Schwerpunkt „Informationstechnik“, Referenzmodulnummer: MB-319

9 Modulbeauftragte/r
Dr.-Ing. Wolfgang Endemann

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leistungselektronische Schaltungen Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Leistungselektronische Schaltungen Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Selbstdgeführte Schaltungen
2. Drehzeigermodulation
3. Schaltnetzteile und resonante Schaltungen
4. Leistungselektronische Interfaces für Photovoltaik und Windenergienutzung
5. FACTS

Literatur
Mohan, Undeland, Robbins: Power Electronics; Michel: Leistungselektronik, 4. Auflage

Kompetenzen

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*

<table>
<thead>
<tr>
<th>Studienleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Teilnahme an den Übungen (Einreichung von PLECS Simulationen)</td>
</tr>
</tbody>
</table>

Die Studienleistung ist Voraussetzung zur Teilnahme an der Modulprüfung.

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Kenntnisse in den Grundlagen der Energietechnik und der Leistungselektronik

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Elektrische Energietechnik“

Modulbeauftragte/r
Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-31: NUMERISCHE FELDBERECHNUNG

Modulhandbuch Master Elektrotechnik und Informationstechnik

Turnus
Jährlich zum WS

Dauer
1 Semester

Studienabschnitt
1. Semester

LP
5

Präsenzanteil
35 h

Eigenstudium
115 h

Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Numerische Feldberechnung Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Numerische Feldberechnung Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Feldberechnung als wesentliche Analysemethode technischer Systeme
2. Gegenüberstellung analytischer und numerischer Feldberechnungsmethoden
3. Überblick über Grundlagen und Anwendungen unterschiedlicher Methoden
4. Zeitschrittverfahren und Kopplung zu Systemmodellen mit konzentrierten Parametern
5. Berücksichtigung nichtlinearer Werkstoffcharakteristiken

Literatur
Kost: Numerische Methoden in der Berechnung elektromagnetischer Felder;
Eckhardt: Numerische Verfahren in der Energietechnik;

Kompetenzen
Nach erfolgreichem Abschluss des Moduls können die Studierenden numerische Methoden zur Feldberechnung anwenden, um elektrotechnische Systeme mit konzentrierten und verteilten Parametern nach der Überführung in mathematische Modelle zu berechnen und zu simulieren. Sie verfügen über die Kompetenz die Ergebnisse hinsichtlich ihrer physikalischen Realisierbarkeit kritisch zu bewerten.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten) Stu-
dienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- Modulprüfung
- Teilleistungen

Teilnahmevoraussetzungen
keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien-
schwerpunkt „Elektrische Energietechnik“

Modulbeauftragte/r
Prof. Dr.-Ing. Martin Pfost
Lehrbeauftragte/r
Priv.-Doz. Dr.-Ing. habil. Meinolf Klocke

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-33: ELEKTRISCHE ANTRIEBSTECHNIK UND AKTORIK

Turnus
Jährlich zum WS

Dauer
1 Semester

Studienabschnitt
3. Semester

LP
5

Präsenzanteil
35 h

Eigenstudium
115 h

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elektrische Antriebstechnik und Aktorik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Elektrische Antriebstechnik und Aktorik Übung</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Elektrische Antriebstechnik und Aktorik Praktikum</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Weiterführende Grundlagen elektrischer Maschinen
2. Bürstenlose Gleichstrommotoren (auch Kleinstmotoren), Permanentmagnetgergte Synchronmaschinen, Asynchronmaschinen
3. Grundlagen für die Ansteuerung elektromechanischer Aktuatoren
4. Grundlagen von Frequenzumrichtern und ihrer Ansteuerung
5. Anwendung bei bürstenlosen Gleichstrommotoren

Literatur

Kompetenzen
Nach erfolgreichem Abschluss kennen die Studierenden die wesentlichen Eigenschaften der heute in der Antriebstechnik verwendeten elektrischen Maschinen und deren Einsatzbereiche in Konsumeranwendungen und in der Industrie. Sie wenden kompetent wichtige Verfahren zum Anlauf und zur Drehzahlverstellung an und kennen experimentelle Bestimmungen der Maschinenparameter. Sie haben erste praktische Erfahrungen mit bürstenlosen Gleichstrommotoren gesammelt.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben. Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.

Prüfungsformen und –leistungen
☒ Modulprüfung
☐ Teilleistungen

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Grundlagen der elektrischen Maschinen

Modultyp und Verwendbarkeit des Moduls

Modulbeauftragte/r
Prof. Dr.-Ing. Martin Pfost

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bionische Systeme Vorlesung</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bionische Systeme Seminar</td>
<td>S</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrinhalte

1. Kategorien der Bionik
2. Biologische Systeme
3. Abstraktion und Herausarbeitung relevanter Prinzipien
4. Funktion und Design
5. Modellübertragung
6. Praktische/Technische Umsetzung

Literatur
- Bhushan: Biomimetics;
- Nachtigall: Bionik als Wissenschaft
- Rossmann: Bionik

Kompetenzen

Prüfungen

Teilleistungen: Präsentation (max. 15 Minuten) und mündliche Prüfung (max. 15 Minuten)

Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Teilnahmevoraussetzungen

Empfohlene Voraussetzungen: Ausreichende Kenntnisse in Grundlagen der Elektrotechnik, Halbleiterbauelemente und Werkstoffe

Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkte „Mikrosystemtechnik und Mikroelektronik“ und „Robotik und Automotive“

Modulbeauftragte/r

Dr.-Ing Evelyn Drabiniok

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>1</td>
<td>Online Problems Vorlesung</td>
</tr>
<tr>
<td>2</td>
<td>Online Problems Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungssprache</th>
<th>Englisch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Competitive Analysis</td>
<td></td>
</tr>
<tr>
<td>2. Randomized Algorithms</td>
<td></td>
</tr>
<tr>
<td>3. Deterministic Algorithms</td>
<td></td>
</tr>
<tr>
<td>4. Game-Theoretic Foundations</td>
<td></td>
</tr>
<tr>
<td>5. Request-Answer Games</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Allan Borodin, Ran El-Yaniv, ONLINE COMPUTATION AND COMPETITIVE ANALYSIS. Cambridge University Press</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss können die Studierenden Online Probleme erkennen und geeignete Verfahren für ihre Bearbeitung anwenden. Sie sind in der Lage, Lösungsverfahren hinsichtlich ihrer Effizienz und Komplexität zu beurteilen und für Online-Probleme neue Lösungsmethoden auf Grundlage der gelernten Verfahren zu entwickeln.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung: mündliche Prüfung (max. 40 Minuten)*</td>
<td></td>
</tr>
<tr>
<td>Studienleistungen: keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen und –leistungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
<td>□ Teilleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Gute Kenntnisse in Grundlagen der diskreten Mathematik und Grundlagen von Algorithmen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Uwe Schwiegelshohn</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integrierte Photonik Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Integrierte Photonik Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch

Lehrinhalte
1. Grundlagen: Dielektrische Wellenleiter (Planare Wellenleiter, Streifenwellenleiter, Technische Anforderungen, Modellierung über Modenanalyse)
2. Passive Komponenten: Funktionsweise und Modellierung (Beschreibung der Modenkoppelung, Modellierung der Wellenausbreitung mit Zeitbereichs- und Frequenzbereichsverfahren, Anwendung als Richtkoppler, Filter, Modulatoren oder zur Dispersionskompensation)
3. Aktive Komponenten: Grundlagen, Funktionsweise und Modellierung (Laser, Verstärker, Photodetektoren, Modellierung über Ratengleichungen)
4. Photonische ICs: Integrationsaspekte, Entwurf (Integration, Systementwurf mit Mixed-Signal-Ansätzen) und Anwendungen in der Sensorik sowie der optischen Übertragungstechnik

Literatur
März, Reinhard: Integrated Optics: Design and Modeling;
Ebeling, Karl-Joachim Ebeling: Integrierte Optoelektronik;
Börner, Müller, Schiek, Trommer: Elemente der integrierten Optik

Kompetenzen
Die Studierenden werden befähigt, Komponenten und Systeme der integrierten Photonik zu verstehen, zu analysieren und zu bewerten. Mit den vermittelten einheitlichen Formalismen sollen die Studierenden zudem in die Lage versetzt werden, neuartige komplexe Komponenten und Systeme der integrierten Photonik zu entwickeln.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)* Studienleistungen: keine

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Mikrosystemtechnik und Mikroelektronik“

Modulbeauftragte/r
PD Dr.-Ing. Dirk Schulz

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
Modul 3-37: AUTOMOTIVE SYSTEMS II

<table>
<thead>
<tr>
<th>Modulstruktur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>Element / Lehrveranstaltung</td>
</tr>
<tr>
<td>1</td>
<td>Automotive Systems II Vorlesung</td>
</tr>
<tr>
<td>2</td>
<td>Automotive Systems II Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Umfelderfassende Sensoren (Kamera, Radar, Lidar, Ultraschall, Sensordatenfusion)</td>
</tr>
<tr>
<td>2. Fortschrittliche Fahrerassistenzsysteme (Adaptive Cruise Control, Lane Keeping, Notbrems- und Notlenkfunktionen)</td>
</tr>
<tr>
<td>3. Teil-/ hoch-/ vollautomatisiertes Fahren (Trajektorienplanung, Situationsanalyse)</td>
</tr>
<tr>
<td>4. Driver Monitoring und Übergabemodelle</td>
</tr>
<tr>
<td>5. Lichttechnik im Kontext automatisiertes Fahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winner, H., S. Hakuli, G. Wolf (Hg.): Handbuch der Fahrerassistenzsysteme (Vieweg+Teubner)</td>
</tr>
<tr>
<td>Braess, H.-H., U. Seiffert (Hg.): Handbuch Kraftfahrzeugtechnik (Vieweg)</td>
</tr>
<tr>
<td>Ludloff, A. (Hg.): Praxiswissen Radar und Radarsignalverarbeitung (Vieweg+Teubner)</td>
</tr>
<tr>
<td>Forsyth, D., J. Ponce (Hg): Computer vision: a modern approach (Prentice Hall)</td>
</tr>
<tr>
<td>Goodfellow, I., Y. Bengio, A. Courville (Hg.): Deep learning (MIT press)</td>
</tr>
<tr>
<td>Wördenweber, B.: Automotive Lighting and Human Vision (Springer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreichem Abschluss des Moduls, besitzen die Studierenden tiefergehende Kenntnisse im Bereich des automatisierten Fahrens. Die Studierenden können Aufgabenstellungen zur Umfeldwahrnehmung und zum teil-/ hoch-/ vollautomatisierten Fahren einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulpflichtprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*</td>
</tr>
<tr>
<td>Studienleistungen: keine</td>
</tr>
</tbody>
</table>

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

<table>
<thead>
<tr>
<th>Prüfungsformen und -leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulpflichtprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen: Grundkenntnisse der Mechatronik, Mechanik, Vorlesung: Automotive Systems I.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modultyp und Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien schwerpunkt „Robotik und Automotive“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragte/r</th>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram</td>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Modul 3-38: HUMAN–CENTERED ROBOTICS

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Studienabschnitt</th>
<th>LP</th>
<th>Präsenzanteil</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich zum WS</td>
<td>1 Semester</td>
<td>3. Semester</td>
<td>5</td>
<td>35 h</td>
<td>115 h</td>
</tr>
</tbody>
</table>

1 | Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human-centered robotics Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Human-centered robotics Übung</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

2 | Lehrveranstaltungssprache: Englisch

3 | Lehrinhalte

1. Introduction and motivation
2. Human-oriented design methods
3. Biomechanics
 a. Motions, measurement, and analysis
 b. Biomechanical models
4. Elastic robotics
 a. Elastic actuators
 b. Control of elastic robots
5. Human–robot interaction
6. System integration and fault treatment
7. Empirical research methods
 a. Research process and experiment design
 b. Research methods, threats, and ethics

Literatur
- Selected research articles.

4 | Kompetenzen

On successful completion of this module, students will be able to:
1. Tackle the interdisciplinary challenges of human-centered robot design.
2. Use engineering methods for modeling, design, and control to develop human-centered robots.
3. Apply methods from psychology (perception, experience), biomechanics (motion and human models), and engineering (design methodology) and interpret their results.
4. Develop robotic systems that are provide user-oriented interaction characteristics in addition to efficient and reliable operation.

5 | Prüfungen

Teilleistungen: Präsentation (15 Minuten) und mündliche (15 Minuten) oder schriftliche Prüfung (max. 60 Minuten)*
Studienleistungen: keine
*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben. Die Studienleistung ist Voraussetzung für die Teilnahme an der Modulprüfung.

6 | Prüfungsformen und –leistungen

- Modulprüfung
- Teilleistungen

7 | Teilnahmevoraussetzungen

Keine

8 | Modultyp und Verwendbarkeit des Moduls

Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“, Studien-schwerpunkt „Robotik und Automotive“

9 | Modulbeauftragte/r

JProf. Dr.-Ing. Philipp Beckerle

Zuständige Fakultät

Fakultät für Elektrotechnik und Informationstechnik
Module 2-25: MODELLIERUNG UND REGELUNG VON ROBOTERN

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modellierung und Regelung von Robotern Vorlesung</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Modellierung und Regelung von Robotern Übung</td>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Englisch

Lehrinhalte
1. Räumliche Transformation
2. Direkte und inverse Kinematik
3. Differentielle Kinematik und Inverse Kinematik Algorithmen
4. Dynamik
5. Bewegungsregelung
6. Kraft- und Impedanzregelung
7. Robotics System Toolbox und Robot Operating System

Literatur
Siciliano, Sciavicco: Robotics: Modelling, Planning and Control (alternativ: Sciavicco, Siciliano: Modelling and Control of Robot Manipulators)
Siciliano, Khatib: Springer Handbook of Robotics

Kompetenzen
Nach erfolgreichem Abschluss des Moduls, beherrschen die Studierenden die Grundlagen der Modellierung und Regelung von Robotern. Die Studierenden können Aufgabenstellungen in der Robotik einordnen und selbständig mit eigenständig ausgewählten Methoden lösen.

Prüfungen
Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten)*
Studienleistungen: keine

Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben.

Prüfungsformen und -leistungen
- [x] Modulprüfung
 - ☐ Teilleistungen

Teilnahmevoraussetzungen
Keine

Modultyp und Verwendbarkeit des Moduls

Modulbeauftragte/r
apl. Prof. Dr. rer. nat. Frank Hoffmann

Zuständige Fakultät
Fakultät für Elektrotechnik und Informationstechnik
4. Semester
Modulstruktur

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Element / Lehrveranstaltung</th>
<th>Typ</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Masterarbeit</td>
<td>P</td>
<td>-</td>
</tr>
</tbody>
</table>

Lehrveranstaltungssprache
Deutsch oder Englisch

Lehrinhalte
1. Einarbeitung in das wissenschaftliche Problem der Aufgabenstellung unter Verwendung von Vorgaben
2. Analyse der relevanten wissenschaftlichen Vorarbeiten
3. Erarbeitung von Lösungsansätzen
4. Verifikation und Bewertung der Lösungsansätze
5. Auswahl und Realisierung des besten Ansatzes
6. Wissenschaftliche Beschreibung der Methodik und der Lösung in Schriftform

Das wissenschaftliche Thema der Masterarbeit muss dem Studienschwerpunkt der Kandidatin oder des Kandidaten zugeordnet sein. Die Inhalte und Ergebnisse der Masterarbeit sind aufzuarbeiten und vor einem Fachpublikum zu präsentieren. Die Präsentation muss spätestens 6 Wochen nach Abgabe der Arbeit erfolgen.

Kompetenzen
Die oder der Studierende ist in der Lage ein eng umrisses technisch-wissenschaftliches Problem aus ihrem oder seinem Fachgebiet selbstständig mit wissenschaftlichen Methoden zu bearbeiten. Sie oder er kann für das Problem relevante Vorarbeiten aus der Fachliteratur bewerten, neue Lösungsansätze entwickeln, diese bewerten und schließlich eine Lösung implementieren. Weiterhin ist sie oder er in der Lage die Ergebnisse schriftlich strukturiert so darzulegen, dass die relevanten Aspekte der Lösung verstanden werden. Die oder der Studierende ist darüber hinaus in der Lage, die Ergebnisse einem Fachpublikum zu präsentieren und schließend zu diskutieren.

Prüfungen
Die Masterarbeit gilt als Modulprüfung.

<table>
<thead>
<tr>
<th>Prüfungsformen und –leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Modulprüfung</td>
</tr>
<tr>
<td>□ Teilleistungen</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
Empfohlene Voraussetzungen: Gute wissenschaftliche Kenntnisse im jeweiligen Gebiet der Masterarbeit
Erforderliche Voraussetzungen: Erwerb von 80 Leistungspunkten im Masterstudiengang.

Modultyp und Verwendbarkeit des Moduls
Wahlpflichtmodul im Masterstudiengang „Elektrotechnik und Informationstechnik“

Modulbeauftragte/r
Dekan/-in der Fakultät für Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th>Zuständige Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Versionsinformationen

V 1.0: Vom Fakultätsrat der Fakultät für Elektrotechnik und Informationstechnik am 19.05.2010 beschlossene Version des Modulhandbuchs

Änderungen der Version vom 06.10.2010 gegenüber der Basisversion vom 19.05.2010:

- Entfernung der Schwerpunkte bei den Basismodulen
- Änderung der Prüfungsmodalitäten bei den Basismodulen
- Änderung der Zahl der erforderlichen Studienleistungen von drei auf zwei in den Modulen ETIT-206, ETIT-243, ETIT-244, ETIT-269, ETIT-270, ETIT-271, ETIT-272
- Inhaltskorrektur des Oberseminar-Moduls ETIT-281 bzgl. des Präsentationsthemas
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 06.10.2010:

- Änderung der Vorlesungssprache von Deutsch auf Englisch in den Modulen ETIT-233, ETIT-244, ETIT-263, ETIT-270
- Aufnahme eines neuen Basismoduls: Modellbildung und Simulation: Elektrische Energieübertragungssysteme (ETIT-207), angeboten von Prof. Dr. Rehtanz
- Streichung der Wahlpflichtmodule ETIT-252 und ETIT-253
- Aufnahme eines weiteren Wahlpflichtmoduls (ETIT-245), angeboten von Jun.-Prof. Dr. Uhrig
- Vereinheitlichte/ formale Darstellung der Prüfungsmodalitäten/ Studienleistungen in den einzelnen Modulen
- Angleichung des Workloads der Module ETIT-229, ETIT-232, ETIT-235 und ETIT-237 auf 300 h
- Streichung der Teilnahmeveranstaltungszeit bei Modul ETIT-263
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 09.02.2011:

- Modul ETIT-236: Ergänzung des Moduls um den Studienschwerpunkt Informations- und Kommunikationstechnik
- Modul ETIT-245: Ergänzung des Moduls um einen Praktikumsversuch in der Übung
- Modul ETIT-263: Umstellung Veranstaltungssprache auf alternierend Deutsch/ Englisch
- Modul ETIT-269: Umstellung Veranstaltungssprache auf Englisch
- Ergänzung zu den Prüfungsmodalitäten bei den Modulen ETIT-200, ETIT-201, ETIT-202, ETIT-204, ETIT-205, ETIT-206, ETIT-207
- Aufnahme eines weiteren Basismoduls (ETIT-208)
- Veranstaltungen, die bisher von Prof. Knoch angeboten wurden, bleiben vorerst bestehen, als Modulbeauftrager wird vorläufig der Dekan der Fakultät für Elektrotechnik und Informations-technik eingesetzt
- Modul ETIT-205 entfällt, als Ersatz wird Modul ETIT-208 aufgenommen
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 13.07.2011:

- Modul ETIT-204: Änderung der geforderten Studienleistungen
- Modul ETIT-264 entfällt. Inhalte aus diesem Modul finden sich im neuen Modul ETIT-209.
- Das Wahlpflichtpraktikum Modul ETIT-214 wird inhaltlich aktualisiert.
- Modul ETIT-231: Das Modul findet nicht mehr im Sommersemester statt, sondern ohne inhaltliche Veränderungen als Modul ETIT-273 im Wintersemester.
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 01.02.2012:
- Modul ETIT-272, „Fahrerassistenzsysteme“ entfällt.
- Neuauflnahme der Module ETIT-246 und ETIT-274 von Frau Prof. Myrzik in Kooperation mit der Fakultät für Raumplanung
- Aktualisierung der Prüfungsmodalitäten bei den Basismodulen
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktuellen Version vom 11.07.2012:
- Interimsweiser Ersatz der Modul-Verantwortlichkeit von Prof. Dr.-Ing. Stefan Kulig in den Modulen ETIT-200, ETIT-220, ETIT-221, ETIT-250 und ETIT-251 durch den Dekan der Fakultät für Elektrotechnik und Informationstechnik.
- Modul ETIT-227: Erweiterung der empfohlenen Voraussetzungen hinsichtlich Hochspannungstechnik.
- Änderung der Prüfungsmodalitäten in den Modulen ETIT-246 und ETIT-222
- Änderung der Veranstaltungssprache bei Modul ETIT-244 von „Englisch“ auf „Deutsch“
- Sprachliche Korrekturen und Anpassungen
- Nachträgliche Änderung (Beschluss des Fakultätsrates vom 22.05.2013): Zusätzliche Aufnahme des Moduls ETIT-248 „Entwicklung, Herstellung und Analyse hochintegrierter Mikro- und Nanosysteme“

Änderungen der Version gegenüber der aktuellen Version vom 23.01.2013:
- Modul ETIT-237: Umstellung Veranstaltungssprache auf Englisch
- Neuauflnahme der Module ETIT-275 und ETIT-276 von Herrn Dr. Kallis für den Schwerpunkt „Mikrosystemtechnik und Mikroelektronik“
- Neuauflnahme des Moduls ETIT-277 von Herrn Prof. Dr. Bertram für den Schwerpunkt „Robotik und Automotive“
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktuellen Version vom 16.07.2013:
- Modul ETIT-200 entfällt, alternativ wird das Modul ETIT-217 neu aufgenommen
- Modul ETIT-223 findet als Modul ETIT-278 im Wintersemester statt
- Modul ETIT-235 findet in englischer Sprache statt
- Modul ETIT-244 findet in englischer Sprache statt
- Neuauflnahme des Moduls ETIT-249 Signal Integrity
- Modul ETIT-239 wird um den Studienschwerpunkt „Robotik und Automotive“ erweitert
- Modul ETIT-268 Fortschrittliche Prozesse der Si-HLT entfällt, alternativ wird Modul ETIT-282 Fortschrittliche Prozesse der Halbleitertechnologie
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 29.01.2014:
- Modul ETIT-257 entfällt ersetztlos
- Sprachliche Korrekturen und Anpassungen

Änderungen der Version gegenüber der aktualisierten Version vom 24.09.2014:
- Modul ETIT-235 findet in deutscher Sprache statt
- Aktualisierung der Lehrinhalte in Modul ETIT-202
- Aktualisierung der Lehrinhalte in Modul ETIT-233
- Aktualisierung der Lehrinhalte in Modul ETIT-258
- Modul ETIT-245 wird ersetztlos gestrichen.
- Sprachliche Korrekturen und Anpassungen

Änderungen gegenüber der aktualisierten Version vom 28.01.2015:
- Änderung der Veranstaltungsdauer bei Modul ETIT-263 von 1 Semester zu 2 Wochen (Block)
- Anpassung der Verantwortlichkeit bei Modul ETIT-267
- Änderung der Frist zur Bekanntgabe der Prüfungsform von drei auf zwei Wochen
- Sprachliche Korrekturen und Anpassungen

Änderungen gegenüber der aktualisierten Version vom 28.09.2015:
- Aktualisierung der Lehrinhalte bei Modul ETIT-202
- Aktualisierung der Lehrinhalte und Kompetenzen bei Modul ETIT-262
- Das Modul ETIT-261 „Faseroptische Nachrichtennetze“ entfällt ab dem SoSe 2016 ersetztlos.
- Aktualisierung der Lehrinhalte, Kompetenzen und Veranstaltungsstruktur (bisher 2V, 1Ü-jetzt 1V, 2Ü) bei Modul ETIT-269; Verschiebung des Moduls ins Sommersemester
- Anpassung der Veranstaltungsform (Übung zu Praktikum) bei Modul ETIT-217, Veranstaltung „Leistungselektronische Schaltungen“
- Ergänzung des Studienschwerpunktes „Robotik und Automotive bei Modul“ ETIT-221
- Ergänzung der Studienschwerpunkte „Informations- und Kommunikationstechnik“, „Mikrosystemtechnik und Mikroelektronik“ sowie „Robotik und Automotive“ bei Modul ETIT-228
- Sprachliche Korrekturen und Anpassungen

Änderungen gegenüber der aktualisierten Version vom 17.02.2016:
- Neuaufnahme des Moduls ETIT-283 „Elektrische Antriebstechnik und Aktorik“ von Prof. Pfost
- Inhaltliche Aktualisierung der Module ETIT-214, ETIT-229 sowie ETIT-235
- Wegfall der Studienleistungen in den Modulen ETIT-206, ETIT-230, ETIT-243, ETIT-244, ETIT-247, ETIT-263, ETIT-271
- Ersatz des Praktikums in den Modulen ETIT-230 und ETIT-263 durch eine praktische Demonstration
- Wegfall des Moduls ETIT-258 „Musterklassifikation“
- Wegfall des Moduls ETIT-225 „Technisches Energie- und Gebäudemanagement“
- Erhöhung der erforderlichen Praktikumsversuche von vier auf sechs im Rahmen der Studienleistung in Modul ETIT-269
- Beschreibung des Moduls ETIT-277 in deutscher Sprache (bislang in englischer Sprache)
- Sprachliche Korrekturen und Anpassungen
- Aktualisierung von Modulverantwortlichkeiten
Änderungen gegenüber der aktualisierten Version vom 27.07.2016:
- Aktualisierung der Lehrinhalte Modul ETIT-263.
- Begrenzung der Teilnehmerzahl Modul ETIT-248.
- Aufnahme des Moduls Medizintechnik ETIT-284
- Aufnahme des Moduls Moderne Leistungshalbleiter ETIT-285
- Aufnahme des Moduls Schnellschaltende Leistungselektronik ETIT-286
- Aufnahme des Moduls Remote Sensing ETIT-287
- Aufnahme des Moduls Ausgewählte Kapitel der Hochspannungstechnik ETIT-288
- Sprachliche Korrekturen und Anpassungen

Änderungen gegenüber der aktualisierten Version vom 24.04.2017:
- Aktualisierung des Moduls ETIT-212 (Inhalt und Teilnahmevoraussetzungen).
- Aktualisierung des Moduls ETIT-262 (Inhalt).
- Aktualisierung des Moduls ETIT-275 (Inhalt und Literaturhinweise).
- Ergänzung des Moduls ETIT-284 durch den Studienschwerpunkt IKT.
- Aufnahme des Moduls ETIT-289 (Bionische Systeme).
- Aktualisierung der Modulverantwortlichkeiten (ETIT-275, ETIT-284, ETIT-289).
- Das Modul ETIT-247 (Bildbasierte Systeme in der Regelungstechnik und Robotik) wird ersatzlos gestrichen.
- Sprachliche Korrekturen und Anpassungen

Änderungen gegenüber der aktualisierten Version vom 06.07.2017:
- Aktualisierung der Modulverantwortlichen in den Modulen ETIT-217, ETIT-225 und ETIT-278.
- Aktualisierung der Lehrbeauftragten in Modul ETIT-227.
- Hinzufügen eines Lehrbeauftragten in den Modulen ETIT-222, ETIT-224 und ETIT-246.
- Aktualisierung der Studienleistungsinhalte in den Modulen ETIT-217 und ETIT-278.
- Aktualisierung der Lehrinhalte und Literaturangaben in Modul ETIT-233. Wegfall der Studienleistungen (5 Programmierpräsenzübungen).
- Aktualisierung der Lehrinhalte, Literaturangaben und Prüfungsform in Modul ETIT-235.
- Aktualisierung der Lehrinhalte und Literaturangaben in Modul ETIT-262.
- Aktualisierung der Lehrinhalte, Literatur, Kompetenzen und Studienleistungen in Modul ETIT-269.
- Spezifizierung der Lehrinhalte und Aktualisierung der Literaturangaben in Modul ETIT-275.
- Aktualisierung der Veranstaltungsform und der Prüfungsmodalitäten in ETIT-284.
- Aktualisierung der Lehrinhalte in Modul ETIT-288.
- Neuaufnahme des Basismoduls ETIT-218 (Modellbildung und Simulation – Nanotechnologien, THz-Technik und Photonik).
- Neuaufnahme des Wahlpflichtpraktikums ETIT-219 (Simulation und Regelung von CO-Robotern).
- Neuaufnahme des Wahlpflichtfachs ETIT-291 (Automotive Systems I).
- Sprachliche Korrekturen und Anpassungen.
Änderungen gegenüber der aktualisierten Version vom 07.02.2018:

- Aktualisierung der Lehrinhalte der Elemente 3 und 4 in Modul ETIT-206, in Modul ETIT-234, in Modul ETIT-269.
- Aktualisierung der Lehrinhalte und Literaturangaben in Modul ETIT-244.
- Aktualisierung der Lehrinhalte und Kompetenzen der Lehrinhalte 3 und 4 in Modul ETIT-217.
- Aktualisierung der Lehrinhalte, Literaturangaben und Kompetenzen in Modul ETIT-277.
- Aktualisierung der Modulverantwortlichkeit in Modul ETIT-239.
- Neuaufnahme des Moduls ETIT-292 „Online Problems“.
- Sprachliche Korrekturen und Anpassungen.

Änderungen gegenüber der aktualisierten Version vom 04.07.2018:

- Prüfung und Korrektur der ausgewiesenen Anteile für Präsenzanteil und Eigenstudium.
- Neuaufnahme des Basismoduls ETIT-300 „Modellbildung und Simulation – Hochfrequenztechnik“.
- Neuaufnahme des Moduls ETIT-293 „Integrierte Photonik“.
- Neuaufnahme des Moduls ETIT-294 „Sichere Kommunikationstechnik“.
- Neuaufnahme des Moduls ETIT-295 „Automotive Systems II“.
- Neuaufnahme des Moduls ETIT-296 „Smart Grids“.
- Inhaltliche Überarbeitung des Moduls ETIT-208 „Modellbildung und Simulation – Rechnergestützte Schaltungen“.
- Inhaltliche Überarbeitung des Moduls ETIT-218 „Modellbildung und Simulation – Nanotechnologien, THZ-Technik und Photonik“.
- Inhaltliche Überarbeitung des Moduls ETIT-236 „Hochfrequenzelektronik“.
- Inhaltliche Überarbeitung des Moduls ETIT-260 „Hochfrequenzsysteme“.
- Erweiterung der Kompetenzbeschreibung in Modul ETIT-291 „Automotive Systems I“.
- Erweiterung des Inhaltes der Kompetenzbeschreibung in Modul ETIT-290 „Masterarbeit“.
- Änderung der Prüfungsmodalitäten in Module ETIT-284 „Medizintechnik“.
- Änderung der Prüfungsmodalitäten in Module ETIT-289 „Bionische Systeme“.
- Streichung des Moduls ETIT-266 „CAD für integrierte Optik“.
- Das Modul ETIT-235 „Scheduling Problems and Solutions“ findet in englischer Sprache statt.
- In Modul ETIT-224 „Elektrizitätswirtschaft“ wird der Lehrbeauftragte Dr.-Ing. Fritz Rettberg gestrichen.
- Änderung der Modulverantwortlichkeit in Modul ETIT-241 „Mikrostrukturtechnik“.
- Sprachliche Korrekturen und Anpassungen.

Änderungen gegenüber der aktualisierten Version vom 30.01.2019:

- Modul ETIT-244 „Modellierung und Regelung von Robotern“ wird zukünftig im Wintersemester angeboten.
- Modul ETIT-269 „Mobile Roboter“: Erhöhung der Vorlesungszeit und des Präsenzanteils, Aktualisierung der Inhalte
- Aktualisierung der Kompetenzbeschreibung in Modul ETIT-293.
- Aktualisierung der Inhalte bei Modul ETIT-296.
• Neuaufnahme des Moduls ETIT-298 „Human-centered robotics“.
• Eintrag der Modulnummern für den Wirtschaftsingenieur-Masterstudiengang (Abschnitt 8, Modultyp und Verwendbarkeit des Moduls) bei allen betroffenen Modulen.
• Sprachliche Korrekturen und Anpassungen.

Information zu den Wahlpflichtmodulen

Zwei fachlich zusammenhängende Module zu jeweils 3 SWS (entspricht i.d.R. 5 LP) können durch eine gemeinsame Modulprüfung abgeschlossen werden. Hierdurch werden 10 Leistungspunkte erworben. Es existiert dafür eine Vielzahl sinnvoller Kombinationen, die im Einzelfall bei den jeweiligen Professoren erfragt werden können.