Distributed and Networked Control AR-228						
Rota D		Duration	Semester	SWS	Credit Points	Workload
annually SS		1 Semester	2 nd (Semester)	3 SWS	5	150 h
1	Modul Structure					
	Course (Abbre	viation)	Type/ SWS	Presence	Self Study	Credit Points
	a) Distributed	l and I Control	Lecture/ 2 SWS	25 h	40 h	3
	b) Distributed	l and	Tutorial/ 1 SWS	15 h	40 h	2
	c) Distributed	l and	Practical training			
2	Language					
2	Content					
5	Eloment 1					
	Element 1					
	1. Introd	uction to distribut	ted control and netw	orked systems		
	a.	Cyber-physical	systems			
	D.	Application doi	mains			
	C. 2 Algebr	Examples				
	2. Algebraic graph theory					
	a. Directed graphs and their description					
	С.	Analysis tools f	or graphs			
	3. Consensus in multi-agent control					
	a.	Control design	for consensus			
	b. Convergence analysis					
	c. Leader-follower networks					
	4. Synchronisation					
	a. Modelling and interpretation of coupling structures					
	b. Linear and nonlinear settings					
	c. Kuramoto oscillators					
	d.	Power-swing e	quations			
	5. Kesearch outlook and case studies					
	Elemente 2 und 3					
	Black board exercises, in class computer exercises					
	Literature:					
	 Jan Lunze, Networked Control of Multi-Agent Systems, Bookmundo Direct, 2019, ISBN: 9789463867139 					
	 France 19864 	esco Bullo, Lecture 25643	es on Network Systen	ns, 2Kindle Dire	ect Publishing, 20)19, ISBN: 978-
4	Competencies					
	The students ar	re able to formula	te and to solve probl	ems of modell	ing and control o	f networked control
	systems and distributed control. The students are able to understand and to analyze the interplay of					
	problem formulation, modelling and system-theoretic solution approaches. They know how to apply					
	and to implement distributed and decentralized control schemes for networked linear systems. The					
	students are able to analyze consensus phenomena and synchronization mechanisms arising in coupled					
_	systems.					
5	Examination Requirements					
	Oral exam (max. 30 minutes) or written exam (90 minutes)					
6	Formality of Examination					

	🗵 Module Finals	Accumulated Grade			
7	Module Requirements (Prerequisites)				
	Basics of control engineering (state space description, LQR control, Lyapunov functions)				
	Basics of ordinary differential equations				
8	Allocation to Curriculum:				
	Program: Automation & Robotics; Field of study:	Process Automation, Robotics, Cognitive Systems			
9	Responsibility/ Lecturer				
	Prof. DrIng. Timm Faulwasser/ Prof. DrIng. Tim	im Faulwasser			